369 resultados para STARCH NANOCRYSTALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Zn0.95-xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an autocombustion method. X-ray absorption spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry and Ni 2p core-level photoemission spectroscopy analyses revealed that some of the nickel ions were substituted for Zn2+ into the ZnO matrix while others gave birth to NiO nanoclusters embedded in the ZnO particles. The Zn0.95Ni0.05O sample showed no enhancement of room-temperature ferromagnetism after Al doping. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 8-week growth trial was carried out in a semi-recirculation system to investigate the effect of high dietary starch levels on the growth performance, blood chemistry, starch utilization and body composition of gibel carp (Carassius auratus var. gibelio). Five isonitrogenous and isocarloric experimental diets were formulated to contain different starch levels (24%, 28%, 32%, 36% and 40% respectively). Triplicate groups of fish (24 fish per tank with an average body weight, of 8.5 g) were assigned to each diet. The results showed that dietary carbohydrate levels significantly affected the growth performance, hepatopancreatic lipid content, pyruvate kinase (PK) activity and whole-body lipid content. Growth performance, body crude lipid and plasma glucose concentrations showed a decreasing trend with an increase in dietary starch from 24% to 40%. Pyruvate kinase activities and hepatopancreatic lipid content showed an increasing trend with the dietary starch increasing from 24% to 32%, and then a decreasing trend with the dietary starch increasing from 32% to 40%. No significant difference in the hepatopancreatic hexokinase (HK) activity, plasma triglyceride contents, body crude protein, ash and calcium (Ca) and phosphorus (P) contents was observed between different treatments. In conclusion, higher dietary starch levels (32-40%) significantly (P < 0.05) decreased the growth of gibel carp in the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a simple and flexible electron-beam coevaporation (EBCE) technique has been reported of fabrication of the silicon nanocrystals (Si NCs) and their application to the nonvolatile memory. For EBCE, the Si and SiOx(x=1 or 2) were used as source materials. Transmission electron microscopy images and Raman spectra measurement verified the formation of the Si NCs. The average size and area density of the Si NCs can be adjusted by increasing the Si:O weight ratio in source material, which has a great impact on the crystalline volume fraction of the deposited film and on the charge storage characteristics of the Si NCs. A memory window as large as 6.6 V under +/- 8 V sweep voltage was observed for the metal-oxide-semiconductor capacitor structure with the embedded Si NCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed analysis of the photoluminescence (PL) from Si nanocrystals (NCs) embedded in a silicon-rich SiO2 matrix is reported. The PL spectra consist of three Gaussian bands (peaks A,B, and C), originated from the quantum confinement effect of Si NCs, the interface state effect between a Si NC and a SiO2 matrix, and the localized state transitions of amorphous Si clusters, respectively. The size and the surface chemistry of Si NCs are two major factors affecting the transition of the dominant PL origin from the quantum confinement effect to the interface state recombination. The larger the size of Si NCs and the higher the interface state density (in particular, Si = O bonds), the more beneficial for the interface state recombination process to surpass the quantum confinement process, in good agreement with Qin's prediction in Qin and Li [Phys. Rev. B 68, 85309 (2003)]. The realistic model of Si NCs embedded in a SiO2 matrix provides a firm theoretical support to explain the transition trend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mn-doped ZnS nanocrystals of about 3 nm diameter were synthesized by a wet chemical method. X-ray diffraction (XRD) measurements showed that the nanocrystals have the structure of cubic zinc blende. The broadening of the XRD lines is indicative of nanomaterials. Room temperature photoluminescence (PL) spectrum of the undoped sample only exhibited a defected-related blue emission band. But for the doped samples, an orange emission from the Mn2+ T-4(1)-(6)A(1) transition was also observed, apart from the blue emission. The peak position (600 nm) of the Mn2+ emission was shifted to longer wavelength compared to that (584 nm) of bulk ZnS:Mn. With the increase of the Mn2+ concentration, the PL of ZnS:Mn was significantly enhanced. The concentration quenching effect was not observed in our experiments. Such PL phenomena were attributed to the absence of Mn2+ pairs in a single ZnS:Mn nanocrystal, considering the nonradiative energy transfer between Mn2+ ions based on the Poisson approximation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a solution-based chemical method, we have prepared ZnS nanocrystals doped with high concentration of Mn2+. The X-ray diffraction analysis confirmed a zinc blende structure. The average size was about 3 nm. Photoluminescence spectrum showed room temperature emission in the visible spectrum, which consisted of the defect-related emission and the T-4(1)-(6)A(1) emission of Mn2+ ions. Compared with the undoped sample, the luminescence of the ZnS:Mn sample is enhanced by more than an order of magnitude, which indicated that the Mn2+ ions can efficiently boost the luminescence of ZnS nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlations between Si nanocrystal (nc-Si) related photoluminescence (PL), Er3+ emission and nonradiative defects in the Er-doped SiO2 films containing nc-Si (SRSO) are studied. Upon 514.5 nm laser excitation the erbium-doped SRSO samples exhibit PL peaks at around 0.8 and 1.54 mum, which can be assigned to the electron-hole recombination in nc-Si and the intra-4f transition in Er3+, respectively. With increasing Er3+ content in the films, Er3+ emission becomes intense while the PL at 0.8 mum decreases, suggesting a strong coupling of nc-Si and Er 31 ions. Hydrogen plasma treatment for the samples improve the PL intensities of the 0.8 and 1.54 mum bands, indicating H passivation for the nonradiative defects existing in the samples. Further-more, from the effect of hydrogen treatment for the samples, we observe variation of the number of nonradiative defects with annealing temperatures. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon nanocrystals in SiO2 matrix are fabricated by plasma enhanced chemical vapor deposition followed by thermal annealing. The structure and photoluminescence (PL) of the resulting films is investigated as a function of deposition temperature. Drastic improvement of PL efficiency up to 12% is achieved when the deposition temperature is reduced from 250 degreesC to room temperature. Low-temperature deposition is found to result in a high quality final structure of the films in which the silicon nanocrystals are nearly strain-free, and the Si/SiO2 interface sharp. The demonstration of the superior structural and optical properties of the films represents an important step towards the development of silicon-based light emitters. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodispersed ZnS and Eu3+-doped ZnS nanocrystals have been prepared through the co-precipitation reaction of inorganic precursors ZnCl2, EuCl3, and Na2S in a water/methanol binary solution. The mean particle sizes are about 3-5 nm. The structures of the as-prepared ZnS nanoparticles are cubic (zinc blende) as demonstrated by an x-ray powder diffraction. Photoluminescence studies showed a stable room temperature emission in the visible spectrum region for all the samples, with a broadening in the emission band and, in particular, a partially overlapped twin peak in the Eu3+-doped ZnS nanocrystals. The experimental results also indicated that Eu3+-doped ZnS nanocrystals, prepared by controlling synthetic conditions, were stable. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical spectra of CdSe nanocrystals are measured at room temperature under pressure ranging from 0 to 5.2 GPa. The exciton energies shift linearly with pressure below 5.2 GPa. The pressure coefficient is 27 meV GPa(-1) for small CdSe nanocrystals with the radius of 2.4 nm. With the approximation of a rigid-atomic pseudopotential, the pressure coefficients of the energy band are calculated. By using the hole effective-mass Hamiltonian for the semiconductors with wurtzite structure under various pressures, we study the exciton states and optical spectra for CdSe nanocrystals under hydrostatic pressure in detail. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbit coupling on the hole states are investigated. The Coulomb interaction of the exciton states is also taken into account. It is found that the theoretical results are in good agreement with the experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the hole levels and exciton states in CdS nanocrystals by using the hole effective-mass Hamiltonian for wurtzite structure. It is found that the optically passive P-x state will become the ground hole state for small CdS quantum dots of radius less than 69 Angstrom. It suggests that the "dark exciton" would be more easily observed in the CdS quantum dots than that in CdSe quantum dots. The size dependence of the resonant Stokes shift is predicted for CdS quantum dots. Including the Coulomb interaction, exciton energies as functions of the dot radius are calculated and compared with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eu2+ doped ZnS nanocrystals exhibit new luminescence properties because of the enlarged energy gap of nanocrystalline ZnS host due to quantum confinement effects. Photoluminescence emission at about 520 nm from Eu2+ doped ZnS nanocrystals at room temperature is investigated by using photoluminescence emission and excitation spectroscopy. Such green emission with long lifetime (ms) is proposed to be a result of excitation, ionization, carriers recapture and recombination via Eu2+ centers in nanocrystalline ZnS host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) and Raman spectra of silicon nanocrystals prepared by Si ion implantion into SiO2 layers on Si substrate have been measured at room temperature. Their dependence on annealing temperature was investigated in detail. The PL peaks observed in the as-implanted sample originate from the defects in SiO2 layers caused by ion implantation. They actually disappear after thermal annealing at 800 degrees C. The PL peak from silicon nanocrystals was observed when thermal annealing temperatures are higher than 900 degrees C. The PL peak is redshifted to 1.7 eV and the intensity reaches maximum at the thermal annealing temperature of 1100 degrees C. The characterized Raman scattering peak of silicon nanocrystals was observed by using a right angle scattering configuration. The Raman signal related to the silicon nanocrystals appears only in the samples annealed at temperature above 900 degrees C. It further proves the formation of silicon nanocrystals in these samples. (C) 2000 American Institute of Physics. [S0021-8979(00)00215-2].