101 resultados para Running Lamps.
Resumo:
利用Nd:YAG调Q单脉冲激光和自由脉冲激光对硬膜窄带干涉滤光片进行激光损伤阈值的测试,并且采用表面热透镜技术测量了滤光片的吸收率。实验发现:窄带干涉滤光片的吸收率和激光损伤阈值强烈依赖于辐照激光波长与窄带干涉滤光片通带的相对位置;在调Q单脉冲激光作用下,不同中心波长的滤光片损伤形貌存在明显的差别,而在自由脉冲激光作用下,各滤光片的损伤形貌则趋于相同.均表现为典型的热熔烧蚀破坏。根据实验结果,结合损伤形貌,通过驻波场理论对激光作用下滤光片内电场分布的分析与模拟.探讨了两种激光模式作用下滤光片的损伤特征和损
Resumo:
In this article, the ZnO quantum dots-SiO2 (Z-S) nanocomposite particles were first synthesized. Transparent Z-S/epoxy super-nanocomposites were then prepared by introducing calcined Z-S nanocomposite particles with a proper ratio of ZnO to SiO2 into a transparent epoxy matrix in terms of the filler-matrix refractive index matching principle. It was shown that the epoxy super-nanocomposites displayed intense luminescence with broad emission spectra. Moreover, the epoxy super-nanocomposites showed the interesting afterglow phenomenon with a long phosphorescence lifetime that was not observed for ZnO-QDs/epoxy nanocomposites. Finally, the transparent and light-emitting Z-S/epoxy super-nanocomposites were successfully employed as encapsulating materials for synthesis of highly bright LED lamps.
Resumo:
The tribological behaviors and phase transformation of single crystal silicon against Si3N4, Ruby and steel were investigated in this study. It was found that the strong chemical action between silicon and Fe was the key factor to the tribological behavior of silicon as slid against steel. SEM and Raman spectroscopy indicated that phase transformation of single crystal silicon occurred during the running-in period at low sliding velocity as slid against Si3N4 and Ruby. and gave birth to single or a mixture phase of Si-III, Si-XII and amorphous silicon. The high hardness of counterpart and the absence of chemical action between silicon and counterpart facilitated the phase transformation of single crystal silicon. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm(2) only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current density can be reduced remarkably compared with the free-running QD gain device.
Resumo:
Web services can be seen as a newly emerging research area for Service-oriented Computing and their implementation in Service-oriented Architectures. Web services are self-contained, self-describing modular applications or components providing services. Web services may be dynamically aggregated, composed, and enacted as Web services Workflows. This requires frameworks and interaction protocols for their co-ordination and transaction support. In a Service-oriented Computing setting, transactions are more complex, involve multiple parties (roles), span many organizations, and may be long-running, consisting of a highly decentralized service partner and performed by autonomous entities. A Service-oriented Transaction Model has to provide comprehensive support for long-running propositions including negotiations, conversations, commitments, contracts, tracking, payments, and exception handling. Current transaction models and mechanisms including their protocols and primitives do not sufficiently cater for quality-aware and long running transactions comprising loosely-coupled (federated) service partners and resources. Web services transactions require co-ordination behavior provided by a traditional transaction mechanism to control the operations and outcome of an application. Furthermore, Web services transactions require the capability to handle the co-ordination of processing outcomes or results from multiple services in a more flexible manner. This requires more relaxed forms of transactions—those that do not strictly have to abide by the ACID properties—such as loosely-coupled collaboration and workflows. Furthermore, there is a need to group Web services into applications that require some form of correlation, but do not necessarily require transactional behavior. The purpose of this paper is to provide a state-of-the-art review and overview of some proposed standards surrounding Web services composition, co-ordination, and transaction. In particular the Business Process Execution Language for Web services (BPEL4WS), its co-ordination, and transaction frameworks (WS-Co-ordination and WS-Transaction) are discussed.
Resumo:
Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristicsespecially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input samewere simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.
Design and Operation of A 5.5 MWe Biomass Integrated Gasification Combined Cycle Demonstration Plant
Resumo:
The design and operation of a 5.5 MWe biomass integrated gasification combined cycle (IGCC) demonstration plant, which is located in Xinghua, Jiangsu Province of China, are introduced. It is the largest complete biomass gasification power plant that uses rice husk and other agricultural wastes as fuel in Asia. It mainly consists of a 20 MWt atmospheric circulating fluidized-bed gasifier, a gas-purifying system, 10 sets of 450 kW(e) gas engines, a waste heat boiler, a 1.5 MWe steam turbine, a wastewater treatment system, etc. The demonstration plant has been operating since the end of 2005, and its overall efficiency reaches 26-28%. Its capital cost is less than 1200 USD/kW, and its running cost is about 0.079 USD/kWh based on the biomass price of 35.7 USD/ton. There is a 20% increment on capital cost and 35% decrease on the fuel consumption compared to that of a 1 MW system without a combined cycle. Because only part of the project has been performed, many of the tests still remain and, accordingly, must be reported at a later opportunity.
Resumo:
In a slagging combustor or furnace, the high combustion temperature makes the molten slag layer cover the wall and capture the particles. If these particles contain combustible matter, they will continue to burn on the running slag. As a result, the total amount of ash deposition will be much greater than that in dry-wall combustors and the total heat flux through the deposition surface will change greatly. Considering the limitations of existing simulation methods for slagging combustion, this paper introduces a new wall burning model and slag flow model from the analysis; of particle deposition phenomena. Combined with a conventional combustion simulation program, the total computational frame is introduced. From comparisons of simulation results from several kinds of methods with experimental data, the conclusion is drawn that the conventional simulation methods are not very suitable for slagging combustion and the wall burning mechanism should be considered more thoroughly.
Resumo:
Orange AlGaInP high brightness light emitting diodes (LEDs) were fabricated by low pressure metalorganic chemical vapor deposition(LP-MOCVD) technology. AlGaInP double heterojunction structure was used as active layer. 15 pairs of Al0.5Ga0.5As/AlAs distributed Bragg reflector and 7 mu m Al0.8Ga0.2As current spreading layer were employed to reduce the absorption of GaAs substrate and upper anode respectively. At 20mA the LEDs emitting wavelength was between 600-610nm with 18.3nm FWHM, 0.45mW radiation power and 1.7% external quantum efficiency. Brightness of the LED chips and LED lamps with 15 degrees viewing angle(2 theta(1/2)) reached 30mcd and 1000mcd respectively.
Resumo:
A capillary electrophoresis microchip coupled with a confocal laser-induced fluorescence (LIF) detector was successfully constructed for the analysis of trace amounts of heavy metals in environmental sources. A new fluorescence dye, RBPhOH, synthesized from rhodamine B, was utilized in a glass microchip to selectively determine copper with high sensitivity. A series of factors including running buffer concentration, detection voltage, and sample loading time were optimized for maximum LIF detector response and, hence, method sensitivity.
Resumo:
The hydraulic conductivity function of fractures is a key scientific question to describe and reveal the process and the role of water seepage reasonably. In this paper, the generation technology of random fracture network and the latest numerical computation method for equivalent permeability tensor of fracture network are applied to analyze the landslide located at Wangjiayuanzi in Wanzhou District of Chongqing by simulating the changes of the seepage field caused by the running of the Three Gorges Reservoir. The influences of the fracture seepage on the seepage field and stability of the landslide were discussed with emphasis. The results show that the fractures existing in the soil increase the permeability coefficient of the landslide body and reduce the delay time of the underground water level in the landslide which fluctuates relative to the water level of reservoir,that causes the safe coefficient of the slope changes more gently than that of the same slope without fractures. It means, if only water level fluctuating condition is concerned, the fractures existing in the soil plays a positive role to the stability of slopes.
Resumo:
Argon gas with simple atomic structure and favorite arcing stability at low input power was used as the propellant. The thruster with a regeneratively cooled nozzle were tested in a vacuum system capable of keeping the chamber pressure at about 10 Pa at a propellant feeding rate of 5 slm. Arc current, arc voltage, thrust, nozzle temperature and propellant feeding rate were measured in situ simultaneously. Effects of the working parameters such as the propellant feeding rate and arc current on the thruster performances, mainly the produced thrust, specific impulse and thrust efficiency, were examined. The variation of arc volt-ampere characteristics with running time and the effect of nozzle temperature on thruster property are discussed.
Resumo:
臭氧层损耗导致的地球表面UV-B辐射增强以及温室气体增多引起的气候变暖是当今两大全球环境问题。UV-B辐射增强和气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。作为世界第三极的青藏高原,UV-B 辐射增强以及气候变暖现象尤为突出。本试验所在林区是青藏高原东缘的主要林区,具有大面积的亚高山人工针叶成熟林,在全球变化背景下该森林的天然更新潜力如何是急待回答的重要问题。基于此,本研究围绕森林树种的种子和幼苗这一更新的重要阶段,开展了气候变暖、UV-B辐射增强和联合胁迫对云杉种子萌发及幼苗定居影响的研究,旨在全球变化背景下,探讨全球变暖、UV-B 辐射增强和联合胁迫是否对西南地区大面积人工亚高山针叶林更新的种子萌发和幼苗定居阶段产生影响。 本文以青藏高原东缘亚高山针叶林主要树种云杉为研究对象,研究云杉种子萌发及幼苗的生长和生理对UV-B辐射增强与气候变暖的响应。采用UV-B荧光灯(UV-lamp)来模拟增强的UV-B 辐射,此外,采用开顶式有机玻璃罩(OTCs)来模拟气候变暖。本试验包括四个处理:(1)大气UV-B 辐射+大气温度(C);(2)大气UV-B 辐射+模拟气候变暖(W);(3)增强的UV-B辐射+大气温度(U);(4)增强的UV-B辐射+模拟气候变暖(U+W)。 根据本试验结果,UV-B辐射增强对云杉种子萌发没有显著影响,它对萌发云杉幼苗的影响主要体现在幼叶展开以后。根据两年的试验结果,增强的UV-B辐射降低了云杉幼苗抗氧化酶活性,降低了抗氧化物质的含量,此外,造成了膜质的过氧化,表现为MDA在针叶中的积累。增强的UV-B照射处理萌发云杉幼苗两年后,幼苗的生长受到显著抑制。我们的结果显示,OTCs分别提高了空气(10 cm)和土壤(5 cm)温度1.74℃和0.94 ℃。增温显著地促进了云杉种子提前萌发,提高了萌发速率和萌发比率,而且,明显地促进了幼苗的生长,表现为株高和生物量累积的显著增长。此外增温还有利于云杉幼苗根的伸长生长以及生物量的累积,这可以使云杉幼苗更好地利用土壤中的水分和营养元素。 根据本试验结果,温度升高显著地促进了增强UV-B辐射下云杉萌发幼苗的生长,这说明,温度升高缓解了UV-B辐射增强对云杉萌发幼苗的负面影响。这种缓解作用可能是温度升高对UV-B辐射增强处理下幼苗的抗氧化系统活性改善的结果。温度升高还缓解了高UV-B辐射对云杉幼苗根生长的抑制作用,这也可能是增温缓解伤害的原因之一。此外,根据我们的试验结果,增温与UV-B辐射增强联合作用(U+W)下云杉萌发幼苗的生长状况好于大气温度与大气UV-B辐射联合(C)处理,表现为株高、地径、根长和生物量积累均高于C处理,因此可以推断,UV-B辐射增强与气候变暖同时存在对萌发幼苗在两年之内的生长没有产生抑制作用,也就是说,气候变暖的缓解作用完全弥补了UV-B辐射增强的有害作用。 同样,增强的UV-B辐射显著影响了云杉幼苗的光合作用,表现为净光合速率(Pn)和表观量子效率(Φ)的提高,此外,根据我们的试验结果,它还造成了PSII的光抑制。增强的UV-B辐射显著抑制了云杉幼苗对营养元素的吸收,表现为大量营养元素、碳、钙、镁和锌含量的降低,但是,它却显著促进了铁在植株体内的积累。增温显著地提高了净光合速率,但是,它对光系统II(PSII)的光化学效率影响不大。温度升高缓解了UV-B增强对云杉幼苗光合作用的伤害,表现为净光合速率、表观量子效率以及PSII光化学效率的提高。此外,温度升高还缓解了UV-B辐射增强对离子吸收的抑制作用。 Enhanced UV-B radiation due to the reduction of O3 layer and global warming induced by increased greenhouse gases in the air have become the two pressing aspects of global climate changes. Moreover, enhanced UV-B radiation and warming have profound and long-term impacts on terrestrial plants and ecosystems, and the studies focusing on the two factors have attracted many attentions. Qinghai-Tibetan Plateau is the third in elevation in the world, and enhanced UV-B radiation and climate warming are especially prominent in this region. Our research located in the main forest belt in the eastern Qinghai-Tibetan Plateau where large areas of subalpine coniferous forests distributed. Based on that, we carried out a research to study the effects of enhanced UV-B radiation and climate warming on seed germination and seedlings growth of seedlings which are the important basic stage in forest regeneration. This research was arranged by a complete factorial design and included two factors (UV-B radiation and temperature) with two levels. The UV-lamps were used to manipulate the supplemental UV-B radiation and open-top chambers (OTCs) were adopted to increase temperature. The four treatments were: (1) C, ambient UV-B without warming; (2) U, enhanced UV-B without warming; (3) W, ambient UV-B with OTCs warming; (4) U+W, enhanced UV-B with OTCs warming. The main results were exhibited as follows: 1. Based on our results in this research, OTCs increased temperature on average 1.74℃ in air (10 cm above ground) and 0.92 ℃ in soil (5 cm beneath ground). Furthermore, OTCs also slightly reduced soil moisture and relative air humidity, however, the differences was not statistically significant. 2. Our results showed that enhanced UV-B had no significant effects on the seeds germination of P. asperata. Enhanced UV-B affected sprouts of P. asperata until the needles unfolded. During two years, enhanced UV-B inhibited the efficiency of the antioxidant defense systems, and as a result, it induced oxidant stress and the accumulation of MDA in needles. After two years of exposure to enhanced UV-B, the growth of P. asperata sprouts was markedly restrained compared with those under ambient UV-B radiation and temperature (C). Warming significantly stimulated the germination speed and increased the germination rate of P. asperata seeds. In the next place, it prominently facilitated the growth of P. asperata sprouts, represented as improvements in stem elongation and biomass accumulation. Furthermore, warming also increased root growth of P. asperata sprouts, which could made sprouts more efficient to use water and nutrient elements in soil. In this research, warming alleviated the deleterious effects of enhanced UV-B on P. asperata sprouts. It markedly stimulated the growth of P. asperata sprouts exposed to enhanced UV-B. The ease effects of warming on the abilities of the antioxidant defense systems might account for its amending effects on growth. After two years of exposure to enhanced UV-B radiation and warming, the growth of P. asperata sprouts was better than those under ambient UV-B radiation without warming (C), which could be seen from the higher plant height, basal diameter, root length and total biomass accumulation compared with C. 3. Enhanced UV-B radiation significantly influenced the photosynthesis processes of two-year old P. asperata seedlings. Our results showed that enhanced UV-B reduced the net photosynthetic rate (Pn) and the apparent quantum efficiency (Φ), and induced photoinhibition of photosynthetic system II (PSII). Enhanced UV-B significantly decreased the concentration of nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg) and zinc (Zn), however, it increased the accumulation of iron (Fe) in the whole plant of P. asperata seedlings. Warming significantly stimulated Pn of P. asperata seedlings but it had no prominent impacts on the photochemical efficiency of PSII. In our research, warming also alleviated the harmful effects of enhanced UV-B on photosynthesis and absorption of ions of P. asperata seedlings. It increased Pn, Φ and the photochemical efficiency of PSII in seedlings exposed to enhanced UV-B. Moreover, warming also increased the absorption of ions of the seedlings exposed to enhanced UV-B radiation.
Resumo:
本文对无介体双室微生物燃料电池的产电性能进行了初步研究,并根据不同运行阶段产电性能的优劣,对其中微生物的差异性进行了比较分析。全文分为两个部分: 第一部分:以乙酸钠为阳极原料构建双室微生物燃料电池(MFC),研究不同阴极受体、外接电阻、乙酸钠浓度和pH等因素对电池产电性能的影响,研究结果表明:在500mL的阴阳极反应体系中,选用乙酸钠作为阳极底物,质量浓度为6.46 g/L, pH 7.0,接入500Ω外电阻,阴极电子受体选择高锰酸钾的情况下,微生物燃料电池产电性能最好,最大电功率密度达到294.72 mW/m2,库伦效率能达到25.87%。在确定最适外接电阻阻值的同时对MFC内阻进行测定,阻值为871.87Ω。 第二部分:微生物燃料电池运行中,比较以厌氧污泥作为接种源的第一阶段和只接入附着有大量微生物电极的第二阶段的产电性能,得出第二阶段产电性能优于第一阶段,最大电功率密度达到353.57mW/m2,比第一阶段提高58.85 mW/m2;库伦效率为39.35%,增幅达52%左右;针对微生物燃料电池运行过程中,底物CH3COONa可能存在其它的代谢途径,本实验进行了第二阶段产电性能与CH3COONa消耗率关系以及阳极液面上方气体成分和含量的研究,发现第二阶段50h前CH3COONa的大量消耗主要用于微生物的生长,在整个运行过程中,阳极液面上方含有CH4和CO2;对气体测定的同时还发现,振荡能增强电功率密度的输出;通过对电极上和污泥中微生物差异性分析得出,δ-变形菌纲、β-变形菌纲和拟杆菌门的菌种更适应微生物燃料电池的运行环境,能在电极上大量富集,提高电池的产电性能,只接入附着有大量微生物的电极能有效降低热袍菌纲的菌种数量,降低了CH3COONa的无为消耗,有效提高了电池的库伦效率。 Electricity production in the mediator-less two-chambered microbial fuel cell(MFC) was researched. Based on the result in the different operation phase in the MFC, the microbial diversity was analysed. The paper involved two parts: Part 1: A two-chambered microbial fuel cell (MFC) was constructed with high-concentration sodium acetate as fuel in the anode. The influence of different electron acceptors in the cathode, external resistance value, pH value and concentration of sodium acetate on electricity generation in MFC was investigated. The result showed that the maximum power density of 294.72 mW/m2 and the coulombic efficiency of 25.87% was achieved at sodium acetate concentration of 6.46 g/L, pH 7.0, external resistance 500Ωin the anode and when using potassium permanganate as electron acceptor in the cathode. While decided the value of resistor, we found that shaking has effect on electricity production in the MFC. Part 2: Comparing the electricity production in different operation phases when using anaerobic sludge as inoculum in the first phase and microbes in the anodic electrode as inoculum in the second phase, the result showed that electricity production in the second phase was more than that in the first phase, the maximum power density of 353.57 mW/m2 and the coulombic efficiency of 39.35% was achieved, 58.85 mW/m2 and 52% more than that in the first phase, respectively. According to the fact that CH3COONa might be metabolized in other pathway in the running process in the MFC, we determining the relationship between electricity production and CH3COONa consumption, and the gas content in the anode, we found that CH3COONa was mainly used for microbe growth before 50h, and the anode contained CH4 and CO2. At the same time, we found that shaking could improve power density. The analysis on diversity of microbe in the anodic electrode and anaerobic sludge showed that δ-proteobacterium, β-proteobacterium and Bacteroidetes adapted themselves to the running environment of MFC. The anode could enrich them to improve the electricity production while reduced the quantity of Thermotogales, which were obligately anaerobic organotrophs with a fermentative metabolism, to increase the coulombic efficiency effectively.
Resumo:
猪场废水COD浓度高、氨氮浓度高、悬浮物浓度高,已成为农村面源污染的主要来源,并严重威胁到农村饮用水安全。猪场废水氨氮浓度高、处理难度大,如何采用经济高效的方法,去除氨氮使其达到排放标准,一直是猪场废水处理中面临的重要难题。 厌氧氨氧化是近年受到国内外水处理研究者广泛关注的新型生物脱氮技术,具有不需要外加有机碳源、节省供氧量、降低能耗等优点。虽然国内外研究者对厌氧氨氧化过程的脱氮机理、厌氧氨氧化菌的生理生化特性等进行了多方面的研究,但已有的报道大多以模拟废水为研究对象,以猪场废水为研究对象的报道,在国内外文献中极少有报导。 本论文以猪场废水为主要研究对象,考察了猪场废水的亚硝化过程、厌氧氨氧化的启动过程,并对亚硝化和厌氧氨氧化联合用于猪场废水脱氮进行了探索。 1.论文首先研究了猪场废水的亚硝化过程,考察了废水水质和主要运行条件对亚硝化过程的影响。实验表明:(1)亚硝化阶段反应时间为8到10h时,出水中氨氮和亚硝酸盐浓度比可达到1:1~1:1.23,满足厌氧氨氧化反应对二者比例的要求;达到前述要求时,氨氮去除率达到58.3~65.6 %,亚硝化率在整个过程均保持在97 %以上,COD去除率在59.2~68.6 %;(2)曝气量(溶解氧)对亚硝化过程影响显著,随着曝气量增大,达到厌氧氨氧化要求的氨氮与亚硝酸盐氮浓度比例所需水力停留时间τ越短,pH出现明显下降的时间越短;(3)τ对应的pH在7.8~8.1之间,无需进行pH调节即可满足厌氧氨氧化反应对pH的要求;(4)氨氮和COD降解过程遵循一级反应动力学,氨氮和COD降解的速率常数分别为0.0656~0.0724 1/h和0.0491~0.0664 1/h。 2.在进行亚硝化过程研究的同时,以模拟废水为试验对象,进行厌氧氨氧化启动研究。以反硝化污泥和养殖厂储水池厌氧底泥的混合污泥作为接种污泥,历时大约100天,培育出具有厌氧氨氧化活性的污泥,氨氮和亚硝酸盐氮最高进水浓度分别为223.8 mg/L和171.4 mg/L,去除率最高分别达48%和41.5%,此时二者消耗比例为1.33:1。 3.在猪场废水的亚硝化研究完成和厌氧氨氧化过程初步启动成功后,在模拟废水中逐步加入猪场废水的亚硝化处理出水,逐步实现亚硝化和厌氧氨氧化的组合。亚硝化出水添加到厌氧反应器后,厌氧氨氧化反应仍可继续进行,且去除效率逐步提高。研究发现添加的亚硝化出水中携带的亚硝化细菌在厌氧氨氧化菌膜外层生长并累积,增加了厌氧氨氧化反应基质的传质阻力,妨碍了厌氧氨氧化效率的提高。 4.亚硝化-厌氧氨氧化实际工程应用探索中,生物接触氧化池可在有效去除废水中的有机物的同时实现亚硝化,出水中氨氮和亚硝酸盐比例平均为1.10,可满足后续厌氧氨氧化的要求;在适宜的进水浓度和温度下,ABR池出现了厌氧氨氧化启动的迹象;研究同时发现,水质的波动和气温的变化是工程中影响厌氧氨氧化菌活性的重要因素。 论文的主要创新点在于:(1)以猪场废水为研究对象,以实现厌氧氨氧化为目标,对亚硝化过程进行了比较详细的考察,获得了亚硝化出水满足厌氧氨氧化要求的工艺条件,通过对其COD和氨氮降解过程的考察,得出亚硝化阶段COD降解和氨氮去除的动力学模型;(2)对亚硝化-厌氧氨氧化处理猪场废水进行了探索,确立了影响其污染物去除率稳定的重要因素。 论文的上述研究成果,为厌氧氨氧化技术的实用性研究提供理论依据。 Piggery wastewater, which is characterized by high concentration of COD、ammonium and suspend substance, has become a most important source of non-point source pollution and also severely threats drinking water security in rural area. How to discharge piggery wastewater with the ammonium concentration meeting standard by economical and effective method? This is the most urgent problem in piggery wastewater treatment. As a new biological nitrogen removal technology, Anammox process has been paid more and more attention by researchers all over the world. Anammox has advantages of no need of organic carbon addition, low oxygen consumption and energy consumption. Plenty of investigations have been carried out to the mechanism, physiological and biochemical characteristic of bacteria about Anammox. Most of researches focused on synthetic wastewater, there is rare report about its application in piggery wastewater. In this paper,experimental studies were performed to investigate Sharon process in treatment of piggery wastewater,the start up process of Annammox using synthetic wastewater were studied, the feasibility of applying Sharon-Anammox process in the nitrogen removal of piggery wastewater was evaluated. 1. Sharon process of piggery wastewater was firstly investigated to analyze the effects of water quality and main running parameters, which meet the NH4+-N to NO2--N ratio requirement of successive Anammox. Results showed: (1)During Sharon Process,after 8~10 hours’ reaction the NH4+-N to NO2--N ratio in effluent reached 1:1.0~1:1.23, when the removal percentage of NH4+-N was 58.3~65.6 %, a semi-nitration rate of above 97 % was achieved during the process; meanwhile 59.2~68.6 % of the COD was also removed. (2)The aeration rate(oxygen) had obvious effect on the hydraulic retention time(τ) which met the NH4+-N to NO2--N ratio requirement of Anammox. As aeration rate increased, the hydraulic retention time(τ) was shortened. (3) The pH corresponding to τ was between 7.8 and 8.1, thus it needed no artificial adjustment. (4) The reduction of ammonia and COD followed the first-order reaction kinetics. The velocity constants of ammonia and COD were 0.0656~0.0724 1/h and 0.0491~0.0664 1/h, respectively. 2. The startup of Anammox process using the artificial wastewater was performed simultaneously with Sharon. The aim was to investigate the running parameters of Anammox and make foundation for the combination stage. By using the mixture of denitrifying sludge and anaerobic sludge in tank of the breeding factory, sludge of Anammox activity was cultivated in UASB after 100 days. The removal percentage of NH4+-N and NO2-N were up to 48% and 41.5%, respectively, when the NH4+-N and NO2-N influent concentration were 223.8 mg/L and 171.4 mg/L, respectively, the NH4+-N and NO2-N removal rate was 1.33:1. 3. After investigation of Sharon and startup of Anammox, effluent of Sharon process was added into the synthetic wastewater to combine Sharon and Anammox step by step. It took some time after the addition of Sharon effluent that Anammox reaction continued and the removal rate kept increasing. It indicated that nitrifying bacteria were carried by the Sharon effluent cumulated in the outer layer of Anammox. This enhanced transfer resistance of Anammox reaction and the increasing removal rate was restrained. 4. In the bio-contact oxidation pond of practical project, Sharon process were carried out successfully and organic compounds were removed effectively. An average NO2-N/ NH4+-N rate of 1:1.0 was achieved in the effluent, which met the requirement of successive Anammox. Under condition of suitable influent concentration and temperature, there was evidence that Anammox could start up in ABR. The variety of wastewater and temperature had great affects on Anammox activity in practical engineering. Innovation of this paper: (1) The Sharon process for treating piggery wastewater was discussed in details. Technological parameters that met requirement of Anammox were obtained. The dynamic models of COD and ammonium removal in the process were educed. (2) Sharon-Ananmmox for treatment of piggery wastewater was investigated, and the primary influencing factors was studied. This paper could be a theoretical consult for research of Anammox utility.