31 resultados para Reliability, Lorenz Curve


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the effect of silicon surface cleaning prior to oxidation on the reliability of ultra-thin oxides. It is demonstrated that chemical preoxide grown in H2SO4/H2O2 (SPM) solution prior to oxidation provides better oxide integrity than both HF-based solution dipping and preoxide grown in RCA SC1 or SC2 solutions. It is also found that the oxides with SPM preoxide exhibit better hot-carrier immunity than the RCA cleaned oxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the link between the economic growth and the environmental quality. Based on a panel data set, a N-shaped Environmental Kuzents Curve has been found for the sample period: a cubic relationship between per capita GDP and emissions of sulphur dioxide (SO2). We also find that energy consumption is an important determinant of environmental degradation. The empirical results suggest that we should promote environmental protection as soon as possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the evaluation of the reliability of the analytical results obtained by Kalman filtering. Two criteria for evaluation were compared: one is based on the autocorrelation analysis of the innovation sequence, the so-called NAC criterion; the other is the innovations number, which actually is the autocorrelation coefficient of the innovation sequence at the initial wavelength. Both criteria allow compensation for the wavelength positioning errors in spectral scans, but there exists a difference in the way they work. The NAC criterion can provide information about the reliability of an individual result, which is very useful for the indication of unmodelled emissions, while the innovations number should be incorporated with the normalization of the innovations or seek the help of the sequence itself for the same purpose. The major limitation of the NAC criterion is that it does not allow the theoretical modelling of continuous backgrounds, which, however, is convenient in practical analysis and can be taken with the innovations number criterion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis bases on horizontal research project “The research about the fine structure and mechanical parameters of abutment jointed rock mass of high arch dam on Jinping Ⅰ Hydropower Station, Yalong River” and “The research about the fine structure and mechanical parameters of the columnar basalt rock mass on Baihetan Hydropower Station, Jinsha River”. A rounded system about the fine structure description and rock mass classification is established. This research mainly contains six aspects as follow: (1) Methods about fine structure description of the window rock mass; (2) The window rock mass classification about the fine structure; (3) Model test study of intermittent joints; (4) Window rock mass strength theory; (5) Numerical experimentations about window rock mass; (6) The multi-source fusion of mechanical parameters based on Bayes principle. Variation of intact rock strength and joint conditions with the weathering and relaxation degree is studied through the description of window rock mass. And four principal parameters: intact rock point load strength, integration degree of window rock mass, joint conditions, and groundwater condition is selected to assess the window rock mass. Window rock mass is classified into three types using the results of window rock mass fine structure description combined with joints develop model. Scores about intact rock strength, integrality condition, divisional plane condition and groundwater conditions are given based on window rock mass fine structure description. Then quality evaluation about two different types of rock mass: general joint structure and columnar jointing structure are carried out to use this window rock mass classification system. Application results show that the window rock mass classification system is effective and applicable. Aimed at structural features of window structure of “the rock mass damaged by recessive fracture”, model tests and numerical models are designed about intermittent joints. By conducting model tests we get shear strength under different normal stress in integrated samples, through samples and intermittent joints samples. Also, the changing trends of shear strength in various connectivity rates are analyzed. We numerically simulate the entire process of direct shear tests by using PFC2D. In order to tally the stress-strain curve of numerical simulation with experimental tests about both integrated samples and through samples, we adjust mechanical factors between particles. Through adopting the same particle geometric parameter, the numerical sample of intermittent joints in different connective condition is re-built. At the same time, we endow the rock bridges and joints in testing samples with the fixed particle contacting parameters, and conduct a series of direct shear tests. Then the destructive process and mechanical parameters in both micro-prospective and macro-prospective are obtained. By synthesizing the results of numerical and sample tests and analyzing the evolutionary changes of stress and strain on intermittent joints plane, we conclude that the centralization of compressive stress on rock bridges increase the shear strength of it. We discuss the destructive mechanics of intermittent joints rock under direct shear condition, meanwhile, divide the whole shear process into five phases, which are elasticity phase, fracture initiation phase, peak value phase, after-peak phase and residual phase. In development of strength theory, the shear strength mechanisms of joint and rock bridge are analyzed respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. Some sets of numerical simulation methods, i.e. the distinct element method (UDEC) based on in-situ geology mapping are developed and introduced. The working methods about determining mechanical parameters of intact rock and joints in numerical model are studied. The operation process and analysis results are demonstrated detailed from the research on parameters of rock mass based on numerical test in the Jinping Ⅰ Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Results about numerical simulation study show that we can get the shear strength mechanical parameters by changing the load conditions. The multi-source rock mass mechanical parameters can be fused by the Bayes theory, which are test value, empirical value and theoretical value. Then the value range and its confidence probability of different rock mass grade are induced and these data supports the reliability design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic exploration is the main tools of exploration for petroleum. as the society needs more petroleum and the level of exploration is going up, the exploration in the area of complex geology construction is the main task in oil industry, so the seismic prestack depth migration appeared, it has good ability for complex construction imaging. Its result depends on the velocity model strongly. So for seismic prestack depth migration has become the main research area. In this thesis the difference in seismic prestack depth migration between our country and the abroad has been analyzed in system. the tomographical method with no layer velocity model, the residual curve velocity analysical method based on velocity model and the deleting method in pre-processing have been developed. In the thesis, the tomographysical method in velocity analysis is been analyzed at first. It characterized with perfection in theory and diffculity in application. This method use the picked first arrivial, compare the difference between the picked first arrival and the calculated arrival in theory velocity model, and then anti-projected the difference along the ray path to get the new velocity model. This method only has the hypothesis of high frequency, no other hypothesis. So it is very effective and has high efficiency. But this method has default still. The picking of first arrival is difficult in the prestack data. The reasons are the ratio of signal to noise is very low and many other event cross each other in prestack data. These phenomenon appear strongly in the complex geology construction area. Based on these a new tomophysical methos in velocity analysis with no layer velocity model is been developed. The aim is to solve the picking problem. It do not need picking the event time contiunely. You can picking in random depending on the reliability. This methos not only need the pick time as the routine tomographysical mehtod, but also the slope of event. In this methos we use the high slope analysis method to improve the precision of picking. In addition we also make research on the residual curve velocity analysis and find that its application is not good and the efficiency is low. The reasons is that the hypothesis is rigid and it is a local optimizing method, it can solve seismic velocity problem in the area with laterical strong velocity variation. A new method is developed to improve the precision of velocity model building . So far the pattern of seismic prestack depth migration is the same as it aborad. Before the work of velocity building the original seismic data must been corrected on a datum plane, and then to make the prestack depth migration work. As we know the successful example is in Mexico bay. It characterized with the simple surface layer construction, the pre-precessing is very simple and its precision is very high. But in our country the main seismic work is in land, the surface layer is very complex, in some area the error of pre-precessing is big, it affect the velocity building. So based on this a new method is developed to delete the per-precessing error and improve the precision of velocity model building. Our main work is, (1) developing a effective tomographical velocity building method with no layer velocity model. (2) a new high resolution slope analysis method is developed. (3) developing a global optimized residual curve velocity buliding method based on velocity model. (4) a effective method of deleting the pre-precessing error is developing. All the method as listed above has been ceritified by the theorical calculation and the actual seismic data.