106 resultados para Quantum-mechanical calculation
Resumo:
We investigate interference effects of the backscattering current through a double-barrier structure in an interacting quantum wire attached to noninteracting leads. Depending on the interaction strength and the location of the barriers, the backscattering current exhibits different oscillation and scaling characteristics with the applied voltage in the strong and weak interaction cases. However, in both cases, the oscillation behaviors of the backscattering current are mainly determined by the quantum mechanical interference due to the existence of the double barriers.
Resumo:
The time evolution of the quantum mechanical state of an electron is calculated in the framework of the effective-mass envelope function theory for an InAs/GaAs quantum dot. The results indicate that the superposition state electron density oscillates in the quantum dot, with a period on the order of femtoseconds. The interaction energy E-ij between two electrons located in different quantum dots is calculated for one electron in the ith pure quantum state and another in the jth pure quantum state. We find that E-11]E-12]E-22, and E-ij decreases as the distance between the two quantum dots increases. We present a parameter-phase diagram which defines the parameter region for the use of an InAs/GaAs quantum dot as a two-level quantum system in quantum computation. A static electric field is found to efficiently prolong the decoherence time. Our results should be useful for designing the solid-state implementation of quantum computing. (C) 2001 American Institute of Physics.
Resumo:
We investigate the controllable negative and positive group delay in transmission through a single quantum well at the finite longitudinal magnetic fields. It is shown that the magneto-coupling effect between the longitudinal motion component and the transverse Landau orbits plays an important role in the group delay. The group delay depends not only on the width of potential well and the incident energy, but also on the magnetic-field strengthen and the Landau quantum number. The results show that the group delay can be changed from positive to negative by the modulation of the magnetic field. These interesting phenomena may lead to the tunable quantum mechanical delay line. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The proton radioactivity half-lives of spherical proton emitters are investigated within a generalized liquid drop model (GLDM), including the proximity effects between nuclei in a neck and the mass and charge asymmetry. The penetrability is calculated in the WKB approximation and the assault frequency is estimated by the quantum mechanism method considering the structure of the parent nucleus. The spectroscopic factor is taken into account in half-life calculation, which is obtained by employing the relativistic mean field (RMF) theory. The half-lives within the GLDM are compared with the experimental data and other theoretical values. The results show that the GLDM works quite well for spherical proton emitters when the assault frequency is estimated by the quantum mechanical method and the spectroscopic factor is considered.
Resumo:
Gas-phase ion-molecular reactions of C-60 and C-70 with the ion system of acetone have been studied in this paper. The ions of protoned and acetylized C-60 and C-70 were formed by the reactions of C-60 and C-70 with some ions which existed in the ion system when mass spectrometer worked on chemical ionization conditions. The reactivity of C-70 is greater than that of C-60. Results of quantum chemical calculation for the adduct ions showed a sigma bond between the acyl carbon atom and C-60 may be Formed. These results will provide some valuable informations on the condense-phase acetylization of C-60.
Resumo:
The inhibition effect of metal-free phthalocyanine (H2Pc), copper phthalocyanine (CuPc) and copper phthalocyanine tetrasulfuric tetrasodium salt (CuPc center dot S(4)center dot Na-4) on mild steel in I mol/l HCl in the concentration range of 1.0 X 10(-5) to 1.0 X 10(-3) mol/l was investigated by electrochemical test, scanning electron microscope with energy dispersive spectrometer (SEM/EDS) and quantum chemical method. The potentiodynamic polarization curves of mild steel in hydrochloric acid containing these compounds showed both cathodic and anodic processes of steel corrosion were suppressed, and the Nyquist plots of impedance expressed mainly as a capacitive loop with different compounds and concentrations. For all these phthalocyanines, the inhibition efficiency increased with the increase in inhibitor concentration, while the inhibition efficiencies for these three phthalocyanines with the same concentration decreased in the order Of CuPc center dot S(4)center dot Na-4 > CuPc > H2Pc according to the electrochemical measurement results. The SEM/EDS analysis indicated that there are more lightly corroded and oxidative steel surface for the specimens after immersion in acid solution containing 1.0 x 10(-3) mol/l phthalocyanines than that in blank. The quantum chemical calculation results showed that the inhibition efficiency of these phthalocyanines increased with decrease in molecule's LUMO energy, which was different from the micro-cyclic compounds. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The inhibiting effect and mechanism of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylicacid(ciprofloxacin), 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid (norfloxacin) and (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7 H-pyrido(1,2,3-de)-1,4-benzoxazine-6 carboxylic acid (ofloxacin) on the corrosion of mild steel in 1 mol/L HCl have been studied using electrochemical method, quantum chemical method and SEM at 303 K. The potentiodynamic results showed that these compounds suppressed both cathodic and anodic processes of mild steel corrosion in 1 mol/L HCl. The impedance spectroscopy showed that R-p values increased, and C-dl values decreased with the rising of the working concentration. Quantum chemical calculation showed that there was a positive correlation between some inhibitors structure properties and the inhibitory efficiency. The inhibitors function through adsorption followed Langmuir isotherm, and chemisorption made more contribution to the adsorption of the inhibitors on the steel surface compared with physical adsorption. SEM analysis suggested that the metal had been protected from aggressive corrosion because of the addition of the inhibitors.
Resumo:
Nine novel triazole compounds containing ester group were designed and synthesized. Their structures were confirmed by elemental, H-1 NMR and IR analyses, and optimized by means of DFT (Density Functional Theory) method at the B3LYP/6-31G* level. Based on the quantum-chemical calculation results and the Pearson coefficients between FA and quantumchemical parameters, V, LogP, MR and E-HOMO are shown to be the important relative factors which affect FA of the title compounds.
Resumo:
The purines and its derivatives, such as, guanine, adenine, 2,6-diaminopurine, 6-thioguanine and 2,6-dithiopurine, were investigated as corrosion inhibitors for mild steel in 1 M HCl solution by weight loss measurements, electrochemical tests and quantum chemical calculations. The polarization curves of mild steel in the hydrochloric acid solutions of the purines showed that both cathodic and anodic processes of steel corrosion were suppressed. The Nyquist plots of impedance expressed mainly as a depressed capacitive loop with different compounds and concentrations. For all these purines, the inhibition efficiency increased by increasing the inhibitor concentration, and the inhibition efficiency orders are 2,6-dithiopurine > 6-thioguanine > 2,6-diaminopurine > adenine > guanine with the highest inhibiting efficiency of 88.0% for 10(-3) M 2,6-dithiopurine. The optimized structures of purines, the Mulliken charges, molecular orbital densities and relevant parameters were calculated by quantum chemical calculations. The quantum chemical calculation results inferred that the adsorption belong to physical adsorption, which might arise from the pi stacking between the pi electron of the purines and the metal surface. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The polar headgroup of dipalmitoylphosphatidylcholine (DPPC) molecule both in gas phase and aqueous Solution is investigated by the hybrid quantum mechanical/molecular mechanical (QM/MM) method, in which the polar head of DPPC molecule and the bound water molecules are treated with density functional theory (DFT), while the apolar hydrocarbon chain of DPPC molecule is treated with MM method. It is demonstrated that the hybrid QM/MM method is both accurate and efficient to describe the conformations of DPPC headgroup. Folded structures of headgroup are found in gas phase calculations. In this work, both monohydration and polyhydration phenomena are investigated. In monohydration, different water association sites are studied. Both the hydration energy and the quantum properties of DPPC and water molecules are calculated at the DFT level of theory after geometry optimization. The binding force of monohydration is estimated by using the scan method. In polyhydration, more extended conformations are found and hydration energies in different polyhydration styles are estimated. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A theoretical model is proposed to describe the microscopic processes involved in the ablation in fused silica induced by femtosecond-laser pulse. Conduction-band electron (CBE) can absorb laser energy, the rate is calculated by quantum mechanical method and classical method. CBE is produced via photoionization (PI) and impact ionization (II). The PI and II rates are calculated by using the Keldysh theory and double-flux model, respectively. Besides the CBE production, we investigate laser energy deposition and its distribution. The equation of energy diffusion in physical space is resolved numerically. Taking energy density E-dep=54 kJ/cm(3) as the criterion, we calculate damage threshold, ablation depth, and ablation volumes. It is found that if energy diffusion is considered, energy density near sample surface is reduced to 1/10, damage threshold is enhanced more than 30%, ablation depth is increased by a factor of 10. Our theoretical results agree well with experimental measurements. Several ultrafast phenomena in fused silica are also discussed. (C) 2004 American Institute of Physics.
Resumo:
光合放氧研究近十年来已有重要进展,但在该领域仍有很多重要问题待研究。本论文工作主要是对光系统氧化侧与光合放氧密切相关的组分的结构和性能进行理论和模拟研究,工作可概括如下: (一)、放氧中心结构和性能的探索。 1、对放氧中心Mn202单元与配体组氨酸、H2O和Cl等结合方式的理论研究显示:(a)、组氨酸和H20分子均可能与Mn202平面垂直,彼此保持较大的距离,且结合在不同的Mn离子上;(b)、2个H2O分子可能结合在不同Mn202单元上。 2、对Mn簇核心骨架的理论研究显示有必要引入新的Ca、Cl结合方式,以防止因两个Mn202单元线性化而导致2个H2O分子结合位点远离。 (二)、次级电子给体Tyr_z和Tyr_D的结构与功能。 对次级电子给体Tyr_z和Tyr_D进行精确量子化学研究显示:(a)、在中性条件下,Tyr_D和Tyr_z均只与组氨酸通过氢键作用;(b)、当失去电子后,结构发生明显变化,导致正电荷主要集中在组氨酸上,自由基主要集中在Tyr上;(c)、第三组分(H_20分子或羧基等)的引入使中性体系不容易给出电子;(d)、结合最新文献报导,推测Tyr_D~+和Tyr_z~+除与组氨酸作用外还可能分别与水和羧基作用。 (三)、原初电子给体的理论和模拟研究。 1、对紫细菌原初电子给体P_(870)的理论研究显示:(a)、双分子结构比单分子结构稳定;(b)、电荷分离之后,原初电子给体原有的空间结构不再是稳定的构型,它会向能量和化学活性均更低的构型转变。在光合细菌的原初电子给体P870中,这种转变可通过C3位的乙酰基旋转使其氧原子与另一个细菌叶绿素分子的镁原子相互作用使P870+•的总能量和化学活性明显降低。推测这种构型转变对于防止原初反应过程中的电荷重组、维持光能的高效转化有重要意义。提出了原初反应过程中结构动态变化的新观点,利用这一观点可对光合细菌原初反应动力学研究所观测到的慢过程及蛋白质微环境对原初电子给体和原初反应都有重要影响等实验现象给予较好的解释。 2、对光系统II原初电子给体P680的结构进行理论探讨,提出了两个叶绿素a分子平面间夹角为50.0±2.5°时能量最低的夹角模型。 3、采用N-甲基咪唑(C4H6N2)模拟生物体内的组氨酸,通过观测CCL4中的Chla与C4H6N2反应的吸收、CD和MCD光谱得到以下结论:(a)、在纯CCL4中,每个Chla处于5配位状态,Chla形成不对称的双聚体,彼此之间存在较强的偶合作用。提出两个Chla通过不等价的2个Mg-O配位键(O分别来自于C131位的酮基和C17位酯基的C=O)连接为紧密双体结构;(b)、当C4H6N2/Chla = 0.5和1时,其吸收、CD和MCD光谱均发生明显变化,两个Chla之间的偶合作用明显减弱,但此时仍为双聚体。推测C4H6N2首先取代原紧密双体结构中Mg-O酯键,进而取代Mg-O酮键,最后两个Chla分子通过两个Mg…O弱相互作用连接为松弛的双体结构,该模型与理论获得的P_(680)的结构相似。 在上述研究的基础上,提出了包括放氧中心外围配体和TyrZ在内的放氧中心结构新模型。在新结构模型中,2个H2O分子不对称地结合于“C”形结构开口端两个低价的Mn1II和Mn4III上,并保持较大距离;两个组氨酸的咪唑环通过N原子与两个高价的Mn2IV、Mn3IV结合;Cl结合于MB4TM,并与Ca相连;Ca通过O桥和COO-相连使两个Mn202单元保持特定空间构型。TyrZ通过组氨酸(D1-His190)与Mn簇作用。此外,新模型尝试着在O桥上引入质子。放氧中心结构及其邻近环境(包括TyrZ和TyrD)整体处于中性状态。 同时还提出了新的放氧机理,认为电子和质子的释放非同步进行,并首次明确提出两个水分子的不对称氧化和结构动态变化等观点。认为Ca在维持放氧中心的结构方面担负重要作用,C1与Mn离子之间的亲核作用变化是放氧中心结构变化的关键。
Resumo:
A mesoscopic Coulomb blockade system with two transport channels is studied in terms of full counting statistics. It is found that the shot noise and skewness are crucially affected by the quantum mechanical interference. In particular, the super-Poisson behavior can be induced as a consequence of constructive interference, and can be understood by the formation of effective fast-and-slow transport channels. Dephasing and finite temperature effects are carried out together with physical interpretations.
Resumo:
The theoretical treatment of magnetic levels formed in the minibands of superlattices under an in-plane magnetic field is discussed. It is found that the results of semiclassical and envelope-function treatments based on miniband structures are in good agreement with the results calculated strictly by the quantum-mechanical method, so long as the critical parameter 2hc/eBL2 is larger than 1. The wave functions obtained are in the nature of superlattice envelope functions, which are over and above the usual effective-mass envelope functions for bulk materials.
Resumo:
An advanced superconducting ECR ion source named SECRAL has been constructed at Institute of Modern Physics of Chinese Academy of Sciences, whose superconducting magnet assembly consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamp. In order to investigate the structure of sextupole coils and to increase the structural reliabilities of the magnet system, global and local structural analysis have been performed in various operation scenarios. Winding pack and support structure design of magnet system, mechanical calculation and stress analysis are given in this paper. From the analysis results, it has been found that the magnet system is safe in the referential operation scenarios and the configuration of the magnet complies with design requirements of the SECRAL.