30 resultados para Perfection.
Resumo:
The defects and the lattice perfection of an AlN (0001) single crystal grown by the physical vapor transport (PVT) method were investigated by wet etching, X-ray diffraction (XRD), and infrared absorption, respectively. A regular hexagonal etch pit density (EPD) of about 4000 cm~(-2) is observed on the (0001) A1 surface of an AlN single crystal. The EPD exhibits a line array along the slip direction of the wurtzite structure, indicating a quite large thermal stress born by the crystal in the growth process. The XRD full width at half maximum (FWHM) of the single crystal is 35 arcsec, suggesting a good lattice perfection. Pronounced infrared absorption peaks are observed at wave numbers of 1790, 1850, 2000, and 3000 cm~(-1), respectively. These absorptions might relate to impurities O, C, Si and their complexes in AlN single crystals.
Resumo:
Nearly monodisperse Pd nanocubes with controllable sizes were synthesized through a seed-mediated growth approach. By using Pd nanocubes of 22 nm in size as seeds, the morphology of the as-grown nanostructures was fixed as single-crystalline, which enabled us to rationally tune the size of Pd nanocubes. The formation mechanism of initial 22 nm nanocubes was also discussed. The size-dependent surface plasmon resonance properties of the as-synthesized Pd nanocubes were investigated. Compared with previous methods, the yield, monodispersity, perfection of the shape formation, and the range of size control of these nanocubes are all improved.
Resumo:
The crystallization behavior of two polypropylene (PP) resins as used for biaxially oriented polypropylene (BOPP) and general injection mold applications, respectively, has been intensively investigated and compared by means of polarized light optical micrography (POM), differential scanning calorimetry (DSC), conventional transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM). It is found that both molecular weight distribution and isotacticity of polypropylene strongly affect its crystallization characteristics, e.g., the number of crystal nuclei at the initial stage, crystallization dynamics, the morphology, size and perfection of crystals in the final product, and so on. The results indicate an appropriate molecular structure is vital in producing high-quality BOPP film.
Resumo:
Fractionated crystallization behavior of dispersed PA6 phase in PP/PA6 blends compatibilized with PP-g-MAH was investigated by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), polarized light microscopy (PLM), and wide-angle X-ray diffraction (WAXD) in this work. The lack of usual active heterogeneities in the dispersed droplet was the key factor for the fractionated crystallization of PA6. The crystals formed with less efficient nuclei might contain more defects in the crystal structures than those crystallized with the usual active nuclei. The lower the crystallization temperature, the lesser the perfection of the crystals and the lower crystallinity would be. The fractionated crystallization of PP droplets encapsulated by PA6 domains was also observed. The effect of existing PP-g-MAH-g-PA6 copolymer located at the interface on the fractionated crystallization could not be detected in this work.
Resumo:
The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.
Resumo:
Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/alpha -olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120 degreesC, a low temperature endotherm is observed at lower temperatures (40-80 degreesC), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm T-m(low) varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature T-c. The T-m(low) also depends on the thermal history before the crystallization at T-c, and an extrapolation of T-m(low) (30.6 degreesC) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30 degreesC. The T-m(low) is nearly equal to T-c, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational. entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.
Resumo:
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 similar to 1.2, probably reflecting one-dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. (C) 2000 John Wiley & Sons, Inc.
Resumo:
After isothermal crystallization of the amorphous poly(ether ether ketone), double endothermic behaviour can be found through differential scanning calorimetry experiments. During the heating scan of semicrystalline PEEK, a metastable melt, which comes from the melt of the thinner lamellar crystal populations, can be obtained between these two endotherms. The metastable melt can recrystallize immediately just above the lower melting temperature and form slightly thicker lamellae than the original ones. The thickness and the perfection depend upon the crystallization time and the crystallization temperature. By comparing the TEM morphological observations of the samples before and after partial melting, it can be shown that lamellar crystals, having different thermodynamic stability, form during isothermal crystallization. After partial melting, only the type of lamellar crystal exhibiting the higher thermodynamic stability remains. Wide angle X-ray diffraction measurements shows a slightly change in the crystallinity of the samples before and after the partial melting. Small angle X-ray scattering results exhibit a change in the long period of the lamellar crystals before and after the partial melting process. The crystallization kinetics of the metastable melt can be determined by means of differential scanning calorimetry. The kinetic analysis showed that the isothermal crystallization of the metastable PEEK melt proceeds with an Avrami exponent of n = 1.0 similar to 1.4, reflecting that probably one-dimensional or an irregular line growth of the crystal occurred between the existing main lamellae with heterogeneous nucleation. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Spherulites and lamellar single crystals of poly(aryl ether ketone ketone) containing isophthaloyl moieties (PEKK(I)) were obtained from dilute alpha-chloronaphthalene solution. The morphology and structure of the spherulites and single crystals were studied by electron microscopy and electron diffraction. The spherulites were found to consist of elongated lamellar branches that grow with the b crystallographic axis in the radial direction. Single crystals possess a similar habit, with b parallel to the long axis, a transverse, and c perpendicular to the lamellae plane. High-resolution images of the PEKK(I) crystals which show the perfection of and defects in the crystals, were obtained, and many defects or dislocations a,ere observed. (C) 1997 Elsevier Science Ltd.
Resumo:
The influence of the syndiotacticity on the crystallization behaviour of syndiotactic polypropylene (sPP) has been investigated. The syndiotacticity has been measured by C-13-NMR spectroscopy and the phase formation has been observed by electron diffraction of oriented samples. It is shown that the crystal phase formation depends strongly on the perfection of the tacticity of the macromolecules.
Resumo:
Irradiated polyamide-1010 (PA1010) with and without heat treatment after gamma-ray irradiation was compared by wide angle x-ray diffraction (WAXD), differential scanning calorimeter (DSC) and the determination of gel fractions. The results indicate that post radiation effects due to post radiation crosslinking and scissions affect physical properties. Post radiation effects restrain the formation and perfection of the planes (010), and make the crystals imperfect. Post radiation effects change the crystalline structures of polyamide-1010.
Resumo:
This paper deals with radiation effects on PA1010 containing heterogeneous nuclei (Nd2O3). With the help of DSC, WAXD and ESR techniques, the change in the crystallinity and the perfection of the crystal of irradiated PA1010 containing heterogeneous nuclei were studied. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Seismic exploration is the main tools of exploration for petroleum. as the society needs more petroleum and the level of exploration is going up, the exploration in the area of complex geology construction is the main task in oil industry, so the seismic prestack depth migration appeared, it has good ability for complex construction imaging. Its result depends on the velocity model strongly. So for seismic prestack depth migration has become the main research area. In this thesis the difference in seismic prestack depth migration between our country and the abroad has been analyzed in system. the tomographical method with no layer velocity model, the residual curve velocity analysical method based on velocity model and the deleting method in pre-processing have been developed. In the thesis, the tomographysical method in velocity analysis is been analyzed at first. It characterized with perfection in theory and diffculity in application. This method use the picked first arrivial, compare the difference between the picked first arrival and the calculated arrival in theory velocity model, and then anti-projected the difference along the ray path to get the new velocity model. This method only has the hypothesis of high frequency, no other hypothesis. So it is very effective and has high efficiency. But this method has default still. The picking of first arrival is difficult in the prestack data. The reasons are the ratio of signal to noise is very low and many other event cross each other in prestack data. These phenomenon appear strongly in the complex geology construction area. Based on these a new tomophysical methos in velocity analysis with no layer velocity model is been developed. The aim is to solve the picking problem. It do not need picking the event time contiunely. You can picking in random depending on the reliability. This methos not only need the pick time as the routine tomographysical mehtod, but also the slope of event. In this methos we use the high slope analysis method to improve the precision of picking. In addition we also make research on the residual curve velocity analysis and find that its application is not good and the efficiency is low. The reasons is that the hypothesis is rigid and it is a local optimizing method, it can solve seismic velocity problem in the area with laterical strong velocity variation. A new method is developed to improve the precision of velocity model building . So far the pattern of seismic prestack depth migration is the same as it aborad. Before the work of velocity building the original seismic data must been corrected on a datum plane, and then to make the prestack depth migration work. As we know the successful example is in Mexico bay. It characterized with the simple surface layer construction, the pre-precessing is very simple and its precision is very high. But in our country the main seismic work is in land, the surface layer is very complex, in some area the error of pre-precessing is big, it affect the velocity building. So based on this a new method is developed to delete the per-precessing error and improve the precision of velocity model building. Our main work is, (1) developing a effective tomographical velocity building method with no layer velocity model. (2) a new high resolution slope analysis method is developed. (3) developing a global optimized residual curve velocity buliding method based on velocity model. (4) a effective method of deleting the pre-precessing error is developing. All the method as listed above has been ceritified by the theorical calculation and the actual seismic data.
Resumo:
With the growing development and perfection of reservoir describing technology, its research achievements have played an increasingly important role in old oilfields in recent years. Reservoir description quantitatively describes, characterizes and predicts every kind of reservoir characters in 3D space. The paper takes Banbei block reservoir as an object, studies the reservoir characters and residual oil distributing characteristics of gravity flow genetic reservoir, and definitudes potential adjustment direction of reservoir development. Main achievements are gained as follows. Through fine correlation of strati graphic sequence, the classification of layers and single sands of main payzones in Banbei block is ascertained, the classifying methods of sedimentary unit in gravity flow reservoir characterized with picked cyclical marker bed are formed. On the basis of comprehensive logging evaluation, depositional characters of Banbei block are studied, and classifying methods of sedimentary microfacies in gravity flow reservoir are described. The sedimentary background of main oil layers in Banbei block is open lake with shallow water, and belongs to lacustrine underwater gravity flow- lacustrine phase depositional system. Main microfacies types are underwater water course^ water course side-wing, underwater floodplain, between two water courses, and lacustrine mud, etc. Reservoir sands mainly are underwater water course sands. Influenced by distributing characters of gravity flow underwater water course, sand shapes in plane mainly are stripe, finger-shape, tongue-shape. Sand distribution shows obvious split property. Sands overlap each other. According to comprehensive analysis of lithologic data, logging parameters, and dynamic production data, the researching threads and methods of reservoir heterogeneous characters are perfected. The depositional characters of gravity flow underwater water course in Banbei block determine its high reservoir heterogeneity. Macroscopic heterogeneity is studied in many aspects such as the scale of layers, the scale of single sands, in-situ scale, the distribution of interlayer types, the interlayer scale, and heterogeneity in plane. Thus, heterogeneous characters of reservoir are thoroughly analyzed. Through microscopic research of reservoir, the types of porous structure and related parameters are determined. According to the analysis of dynamic production data, the reaction and inner influential factors of reservoir heterogeneity in waterflood development are further revealed. Started with the concept and classifying methods of flow unit, clustering classification which can better meet the requirements of production is formed. The flow unit of Banbei block can be classified into four types. According to comprehensive evaluation, the first and second type of flow unit have better percolating capability and reserving capability. Research thread of 3D model-building and reservoir numerical simulation combined as an integral is adopted. The types and characters of residual oil distribution are determined. Residual oil of Banbei block mainly distributes in the boundary of sands, near the faults, areas with non-perfect injection-production well pattern , undeveloped sands, vertically poor developed layers. On the basis of comprehensive reservoir study, the threads and methods of improving development effect towards reservoir with high water cut, high recovery percent, serious heterogeneity are ascertained. The whole waterflood development effect of Banbei block reservoir is good. Although its water cut and recovery percent is relatively high, there is still some potential to develop. According to depositional characters of gravity flow and actual production situation? effective means of further improving development level are as follows. We should drill new wells in every kind of areas abounding with residual oil, implement comprehensive measures such as increasing liquid discharge, cyclic waterflood, changing fluid direction when injection-production well pattern is perfected, improve water quality, enhance displacement efficiency in flooding.
Resumo:
The synthesis of NaA zeolite membrane on a porous alpha -Al2O3 support by microwave heating (MH) was investigated. The formation of a NaA zeolite membrane was drastically promoted by MH. The synthesis time was reduced from 3 h for conventional heating (CH) to 15 min for MH. Surface seeding cannot only promote the formation of NaA zeolite on the support, but also inhibit the transformation of NaA zeolite into other types of zeolites. The thickness of the NaA zeolite membrane synthesized by MH was about 4 mum, thinner than that of NaA zeolite membrane synthesized by CH. The permeance of NaA zeolite membrane synthesized by MH was four times higher than that of the NaA zeolite membrane synthesized by CH, while their permselectivities were comparable. Multi-stage synthesis resulted in the transformation of NaA zeolite into other types of zeolites, and the perfection of the as-synthesized membrane decreased.