69 resultados para Multiplicação dos Pães
Resumo:
The adsorption of K on the n-GaAs(I 0 0) surface was investigated by X-ray photoelectron spectroscopy (XPS) and synchrotron radiation photoemission spectroscopy (SR-PES). The Ga3d and As3d core level was measured for clean and K adsorbed GaAs(I 0 0) surface. The adsorption of K induced chemical reaction between K and As, and the K-As reactant formed when the K coverage theta > I ML. The chemical reaction between K and Ga did not occur, but Ga atoms were exchanged by K atoms. From the data of band bending, the Schottky barrier is 0.70 eV. The Fermi-level pinning was not caused by defect levels. The probable reason is that the dangling bonds of surface Ga atoms were filled by the outer-shell electrons of K atoms, forming a half-filled surface state. The Fermi-level pinning was caused by this half-filled surface state. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
酚酞型聚醚砜(C-PES)是一种综合性能优异的工程塑料和功能材料,具有良好的成膜性、机械性能、热稳定性、化学稳定性和可加工性等。作为一种高性能的膜材料,酚酞型聚醚砜已被广泛的用于气体分离和水处理等领域。酚酞型聚醚砜侧链上含有可修饰的酯基,可通过各种方法,引入功能基团,对其进行化学改性,从而改善C-PES的各种性能,并扩展其应用领域。本论文设计制备了含有烷基、芳基、胺基以及磺酸基等功能基团的新型酚酞型聚醚砜材料,并对其性质进行了深入的研究: 1.通过各种基团修饰的二酚单体和二氯二苯砜的缩聚,合成了新型的含有不同酞侧基的Cardo型聚醚砜高分子材料,并对其性能进行了详细的研究。结果表明,所有聚合物都表现出极好的溶解性、耐热稳定性、成膜性、力学性能和气体分离性能;通过在酞侧基上引入了大体积的对叔丁基苯基,大大改善了材料的透气性和氧氮分离选择性;通过引入仲胺基,增大了聚合物链间作用力,从而提高了气体的分离选择性。此外,我们还对不同基团的引入对聚合物各种性能的影响作了详细的探讨,着重研究了聚合物的结构-性能关系。 2.利用含有胺基的双酚单体PPH-NH2、PPH和二氯二苯砜的共聚反应,成功合成了含有胺基的Cardo型聚醚砜高分子材料(PES-NH2),并对材料的各种性质进行了表征。结果表明,由于胺基的引入,酚酞型聚醚砜的亲水性得到了大幅度的提高。 3.利用含胺基的Cardo双酚和磺化二氯二苯砜在碳酸钾作用下的缩聚反应,成功合成了含胺基的磺化Cardo型聚醚砜 (SPES-NH2),并用于制备反渗透复合膜。通过优化制膜条件,我们利用界面聚合的方法成功制备了高水通量的TMC/ MPDA/SPES-NH2反渗透复合膜,并对复合膜的性能和结构进行了研究,重点讨论了膜的性能和结构、形貌之间的关系。结果表明,通过在复合膜活性层中引入强亲水性的磺酸基和全刚性主链的Cardo型聚醚砜,复合膜在保持较高盐截留率(97.3%)情况下,水通量得到了大幅度的提高,达到了51.2 L/m2.h。 4.合成了新型的全刚性芳香主链的两性聚电解质SPES-NH3+,并对其溶液性质和自组装行为进行了详细的研究。结果表明,在一定的溶液pH值下,两性聚电解质SPES-NH3+表现出聚阴离子的性质。另外,通过引入[BMIM]+离子屏蔽磺酸根负离子,我们在没有加入其它聚电解质的情况下,成功地制备了[BMIM]SPES-NH3+多层膜,并对多层膜表面性质进行了研究。结果表明,多层膜的厚度可由层数来控制,并且膜表面较平滑,其RMS值为6 nm。这种新的组装方式为构筑刚性主链的两性聚电解质多层膜提供了新的方法。
Resumo:
玻璃化转变与结构松驰是高聚物的两个非常重要的现象,对高聚物的许多物理性质、使用温度范围、以及长期使用性能等都起着至关重要的决定作用。影响高聚物的玻璃化转变温度的因素有高聚物结构单元的化学结构,分子量的大小以及分布,分子链间的交联以及结晶等,而高聚物的链缠结对其玻璃化转变湿度也有着重要的影响。高聚物的链缠结概念首先是由高聚物的分子量--粘度之间的关系得出的。1940 年 Flory 首先发现对于柔性链聚合物而言,其液态的零切粘度同其分子量成正比;此后,1948 年 Fox 和 Flory 发现当聚合物链的长度超过某一临界值时,粘度与分子量的 3.4 次方成正比,而在临界值之下时粘度与他子量的 1 次方成正比。Bueche 于 1952 年首次提出了高聚物链缠结的概念,并对粘度与分子量的关系进行了成功的解释。链缠结从此之后就成为线性高聚物的一个重要特征并成为控制熔(溶)体流变和固体形变机制的关键因素。关于链缠结的理论也有许多,其中应用最为广泛的有蛇链模型(Reptation Model)和管子模型(Tube Model)等。1969年 Flory 提出聚合物的性质同其均方无扰尺寸有关,此后Doi 和 Edwards 得出了高聚物的链缠结同其无扰尺寸的关系。在通常情况下高聚物在本体状态下是以无规线团的形式彼此相互缠绕在一起的,根本无法相互区分开。而通过特殊的方法可以将在极稀溶液中保持彼此孤立的聚合物分子从溶液中分离出来,并且保持在溶液中的相互孤立状态,从而得到单链高聚物。在单链状态下高聚物分子之间是相互分离的,不存在分子间的链缠结作用,因此通过测定单链高聚物的性质,并与本体状态进行比较,就可以得出分子间链缠结对高聚物性质的影响。我们在本工作中采用了一种新的方法--快速蒸发法来制备高聚物的单链状态样品。具体步骤就是将由沸点远低于 100 ℃ 的溶剂所制成的高分子溶液逐滴滴加到在恒温槽中保持沸腾的水中,溶剂就会在瞬间蒸发出去,而高聚物则基本上保持在溶液中的状态析出。对于几种链段僵硬性不同的高聚物在不同浓度下进行快速蒸发而得到的样品,在相同的升温速率下,用 DSC 方法测定其玻璃化转变温度,发现这些高聚物的玻璃化转变温度随制备溶液浓度的变化都有相同的变化趋势,即在其临界浓度之上时,制备样品的玻璃化转变温度基本上不随浓度的变化而改变,并且同本体状态下的样品的 Tg 温度相近。而在临界浓度以下时,样品的玻璃化温度则随制备溶液浓度的降低而明显下降,在些浓度范围内玻璃化温度与溶液浓度的对数大致成一线性关系。在我们所研究的三种高聚物中,样品的玻璃化温度受制备溶液浓度的影响程度是不一样的,对 PS 的玻璃化转变湿度的影响最大,而对于 PES-C 的影响最小。为了定量地描述制备溶液的浓度变化对样品玻璃化转变温度的影响,我们定义了一个参数 s , s 的值越大,则表明浓度的降低对玻璃化温度下降的影响越明显。对于我们所研究的三种聚合物,S_(PS)>S_(PC)>S_(PES-C)。我们在本工作中还对单链状态对高聚物的结构松弛行为的影响进行了初步的研究,发现同本体样品相比,单链样品的热焓松弛峰所处的温度也比较低,这同其玻璃化转变温度较低相对应。并且同本体样品的焓松弛峰相比,单链样品松弛峰的峰高较低,峰的面积(同松弛焓相对应)也比本体样品的要小,但松弛峰的峰宽却变宽。由 KWW 方程及 TNM 现象学模型通过曲线拟合得出了本体样品与单链样品的结构松弛参数,发现对于所研究的三种高聚物,单链样品的松弛焓相对本体而言都有显著的降低,而特征时间并没有明显的变化,这其中的原因可能是单链状态下的高聚物,发现单链状态对其松弛焓的降低的影响程度也有差异,对于 PS 的影响最为显著,而对 PES-C 的影响最小,这同单链状态对玻璃化转变温度的影响相一致。在研究 PES-C 的分子量的变化对其结构松弛行为的影响时,通过 DSC 方法测出了 PES-C 在不同升温速率下的玻璃化温度,得到了玻璃化转变温度对升温速率的变化曲线,由 1/Tg 对 logQ_h这一直线的斜率,得出了 PES-C 样品的结构松弛的活化能 Δh~*,并且发现对于不同分子量的 PES-C 样品,尽管 Δh~* 和 Tg 的值各不相同,但是 Δh~*/Tg~2 的值却近似为一常数。这样,我们只要知道 PES-C 在某一分子量下的 Tg 以及 Δh~* 值,就可以推算出其它分子量的 PES-C 样品的 Δh~* 值。对于 PES-C 在不同退火温度下的焓变 ΔH(t) 对松弛时间 ta 的曲线进行拟合,并用 KWW 方程(Kraulsch — Watts — Williams)以及结构松弛的 NM(Narayanaswamy — Moynihan)现象学模型进行解析,得出了 PES-C 的结构松弛参数,如极限焓松弛 ΔH_∞,非指数性参数 β,特征结构松弛时间 logτ_c,非线性参数 x 等。并且发现对于不同分子量的样品,其结构弛行为对分子量的大小有着很强的依赖性,在退火间隔温度(Tg — Ta)相同时,特征松弛时间 logτ_c 随着分子量的增加而增加,极限焓松弛 ΔH_∞ 则随着 PES-C 分子量的增加而降低。这些都同 PC 和 PS 有着明显的区别。我们用分子链的运动性随分子量的变化对此作了解释,同普通柔性链高聚物相比,PES-C 的分子链的中间部分所受的限制更为强烈,相对只有链端部分可以相对自由运动。链端的数目随着分子量的降低而增加,因此当分子量降低时,样品在松弛过程中更加容易重排,因此相应的极限焓松弛 ΔH_∞ 也更大。
Resumo:
1.热可交联聚酰亚胺/高性能热塑性树脂共混体系的研究聚苯硫醚[Poly(phenylene sulfide),PPS]是由刚性结构的苯环和柔性的硫醚连接起来,交替排列构成的线性高分子化合物,具有高的热稳定性、良好的耐化学药品性、优良的电绝缘性、耐老化性和阻燃性等综合性能优异的高性能树脂。聚醚矾〔Poly(ether sulfone),PES]是一种非结晶性的热塑性工程塑料一,具有优异的热稳定性、耐高温蠕变性及优异的物理机械性能。其高的玻璃化转变温度(Tg=225℃),使其可以在较高温度下作为结构材料使用。本论文研究了PPS/PES二元共混物的热性能和动态力学性能,并以热可控交联的低分子量多官能单体PMR-POI(聚醚酰亚胺)为界面增强剂,分别研究了POI与PPS、PES之间的接枝和/或交联反应,POI对PPS结晶行为的影响,POI对PES分子运动的影响和POI对PPS/PES共混体系的界面增强。主要结果如下:1.PPS/PES共混物相容性的特征在于选择性的部分相容,少量的非晶PPS分子可以扩散进入PES相区,相反的扩散过程则不会发生。2.PPS/PES共混物的热学性质和动态力学性能主要受连续相的控制。3.PPS相的性能主要受其结晶度的影响,因此能够改变其结晶度的因素均会改变PPS相的性质。4.光谱学和流变的证据表明,POI同PES,PPs共混过程中有接枝反应发生,分子链增长,分子量加大。这种接枝和/或交联反应的程度是热可控的。5.POI是PPS的增塑剂,成核剂和扩链剂,与POI共混使得PPS结晶速率增加,平衡熔点上升,表面折叠自由能降低。6;在PES/POI体系中Pol对PEs起到了增塑的作用,Tg降低,经高温热处理后Tg上升。因此,POI对PES性能的影响也是热可控的。7.PMR-POI能够在PPS/PES共混体系中有效地扩散并起到了降低分散相粒子的尺寸、增强界面的作用。它是该共混体系的有效界面增强剂。8."高温退火既能够提高扩散速率也能够提高反应速率;二者相互竞争。2.马来酸配封端溉碳酸丙撑酯的研究二氧化碳与环氧丙烷交替共聚物(polypropylene careonate,PPC)是由二氧化碳活化并与环氧丙烷共聚而成的一类可完全生物降解的新型高分子材料,具有巨大的潜在应用价值。本论文讨论了马来酸配封端的聚碳酸丙撑酯(MA-PPC)和未封端的PPC的粘弹性、流变行为以及热降解和热分解行为,并得出如下结论:1.马来酸配封端抑制了PPC解拉链式的热分解和无规链断裂热降解,PPC的热稳定性和力学性能得到提高。2.PPC和MA-PPC在玻璃化转变温度有相似的自由体积分数,PPC的Tg比MA-PPC稍低。虽然PPC和MA-PPC玻璃化转变表观活化能E。和平均松弛时间T随温度升高单调降低,但PPC的分子运动对温度更敏感,而MA-PPC较稳定。马来酸配封端改变了PPC分子运动的特征及松弛行为,许多实验证据证明,这是由于封端后的PPC大分子链间的相互作用增强及分子链缠结密度增加。3.MA-PPC在70℃左右会发生脱水,实现大分子偶联反应并得到变温红外光谱、分子量成倍增加及线膨胀数据的有力支持。4.用零剪切粘度几。的方法测得PPC及MA-PPC加工过程中的热降解温度,它们分别为150℃和175℃,在此温度以上,η0降低速率的增加归因于大分子的主链断裂以及解拉链反应。5.测得了PPC的临界缠结分子量,它几乎是MA-PPC相应值(6613)的3倍。这表明马来酸配封端不仅改善了PPC的熔体弹性,而且也大大增强了PPC的缠结密度以及分子链间的相互作用。6.在本实验条件下在氮气和空气的气氛中,MA-PPC同PPC的热降解和热分解行为几乎一致,即在PPc的加土过程可以忽略氧气对其的影响。7.虽然MA-PPC的玻璃化温度在40℃左右,但在40℃-120℃的温度区间内,MA-PPC达不到粘流状态。8.没有剪切力时在120℃-150℃,30分钟内,MA-PPC几乎没有降解,在静态条件下,低于170℃时,MA-PPC的解拉链式降解是十分轻微的,当温度超过170℃,PPC降解相当严重。9.在热机械力存在的情况下,发生无规断链的机会增加,无规断链又会加速解拉链降解,因此实际加工中的加工窗口比静态下窄,MIA-PPC的加工窗口应为130℃-160℃。10.MA-PPC的热分解过程是一步完成的,热分解温度随升温速率的加快而提高,并计算出热分解的表观活化能为623.3KJ/mol。
Resumo:
耐热树脂或称特种工程塑料主要包括聚芳飒类、聚醚酮类、聚芳酷、液晶类、聚酞亚胺和聚苯硫醚等。长春应化所已获得有关聚芳醚酮(PEK-C),聚芳醚砜(PES-C)和聚酞亚胺(PEI)等特种工程塑料的专利12项。在特种工程塑料中,PEK-C,PES-C和PEI有着最高的机械强度(室温下的拉伸强度在100MPa以上)。PES-C和PEI的耐热等级最高(热变形温度分别为225℃和220-260℃)。PE工有极好的阻燃性(氧指数为47)和耐磨性。而PEK-C的加工性好、韧性高、耐磨损和抗电击穿等性质突出,其综合物性与英国ICI公司的聚醚醚酮(PEEK)相近,是良好的高性能复合材料基体树脂。具有优异综合物性的PEK-C、PES-C、PEI及其改性系列材料在机械、电子电气、军工、医疗及食品等许多领域有着广泛的应用前景。近年来,长春应化所在酞侧基聚芳醚酮和聚芳醚矾的结构一加工一物性关系及开发应用等方面作了大量的研究工作,主要涉及此两种聚合物的粘弹性、屈服行为、断裂行为、转变与松弛以及复合与共混等方面内容。这些研究工作表明,酞侧基聚芳醚酮和聚芳醚矾经过共混和复合改性能够具有更优异的使用性能,而且这些研究中的一些方法同样可以应用于其它耐热树脂的改性。高分子材料科学的发展趋势就是在更深层次上把握材料的结构特点及其与宏观物性间的相互关耽达到高分子分子设计和材料设计的目标,实现高性能化和高功能化使现有的高分子材料找到更广泛而合理的应用。工程塑料的高性能化是高分子材料科学近年来发展的一个主要方向。为满足航天航空、电子信息、汽车工业家用电器以及机械等多方面技术领域的需要,要求材料的机械性能、耐热性、耐腐蚀性和长期使用性等性能进一步提高。在现有工程塑料品种的基础上通过共混增韧、复合增强等改性方法使其成为高性能的结构材料,是高分子材料私}学的前沿课题及重要任务。本文采用熔融加工的方法制备了PEK-C和PES-C耐热树脂的共混与复合材料,利用热分析、力学性能检测、微观形貌观察、加工性能检测等手段研究了共混物及复合材料的结构与性能。通过对PEK-C和PES-C的冲击断裂过程的研究,我们发现,两种材料在裂纹起始扩展时所能承受的最大应力值相同,但PES-C的裂纹引发(ti)和扩展(tp)所需时间仅是PEK-C的一半,此即PES-C的冲击强度(I)和断裂韧性(KIC)较低的原因。因此,如能延长裂纹引发和扩展的时间,也就是说如能扩大断裂过程区,抑制裂纹的早期形成就能达到增韧的目的。在PES-C的增韧研究方面,我们可以借鉴通用塑料的增韧方法,即在高聚物基体中,以适当的手段掺加第二相粒子,通过粒子的变形和引发基体在粒子周围产生剪切屈服或银纹化等作用机理,实现增韧目的。所不同的是,对PES-C类耐热树脂来说,实现增韧的同时应保持材料原有的高强度和高耐热性等优良险质。另一方面,由于耐热树脂的加工温度极高,适合于通用塑料的偶联剂等界面改性技术已不再适用于特种工程塑料。针对PES-C的增韧方法和机理的研究工作可归纳为以下三个方面:①刚性有机粒子(PPS,LCP等)增韧;②柔性有机粒子(UHMWPE)增韧;③刚性无机粒子(硅灰石)增韧。物理老化或结构松弛效应使得高聚物材料的结构和宏观物性随时间而发生变化。随时间的增长,PES-C和PES-C/PPS共混物的拉伸强度增加、冲击韧性减小,而且这种变化趋势表现出物理老化过程的自衰减特性。研究结果表明,PES-C/pps共棍物的结构松弛速率比PES-C慢。具有良好界面相互作用的PES一C/PPS共混物材料的强度和韧性始终高于PES-C纯组份聚合物。因此说,pES-C/PPS共混物不仅具有良好的短期性能,而且在高温下长期使用过程中,其力学性能将始终优于纯组份聚合物。我们研究了热固性聚酞亚胺预聚物(P01)增容聚芳醚酮/聚苯硫醚共混物的热学性能、力学性能、形态结构及加工性,对POI在聚芳醚酮/聚苯硫醚共混物中所起的增容作用机理进行了初步探讨。实验发现,PEK-C/PPS共混物在保持PEK一C原有的高强度和高模量的同时,加工流动性和韧性得到一定程度的改善。PEK-C/ppS/Pm三元共混物中,少量的POI能够控制PPS分散相的相区尺寸,防止分散相粒子的自凝聚,起到了增容剂的作用。热固性高聚物预聚体可用于增容热塑性高聚物共混体系,这种增容方法有其特殊性和新颖性,增容后的聚芳醚酮/聚苯硫醚共棍物的力学性能得以改善。利用纤维可以作为结晶性高聚物的异相成核剂的特性,将合适的结晶性高聚物与非晶高聚物共混,可以在在一定程度上改善非晶高聚物与纤维间的界面粘结,提高纤维增强效率。这种方法对PEK-C类耐热树脂尤为重要。通过与即S共混,玻纤增强PEK-C复合材料中纤维与基体间的界面粘结以及纤维的长径比明显增加,因而复合材料的强度和模量显著提高,而且加工流动性也得到一定程度的改善。从考虑综合物性的角度出发,利用结晶性高聚物改善纤维与非晶树脂基体间的界面粘结时,结晶性高聚物的用量存在一个最佳值。与PEEK/GF复合材料相比,PEK-C/PPS/GF复合材料在加工能耗、价格等方面存在很大优势,可以预期这一高性能复合材料可应用于制造高强度、高耐热、耐腐蚀、耐磨损、耐疲劳的往复运动部件、振动或转动等机械零部件。
Resumo:
本工作的目的是希望通过共混技术制备酚酞型聚芳醚砜与双酚A型聚砜(PSF),酚酞型聚芳醚砜与尼龙66共混物,以便改善酚酞聚芳醚砜(PES-C)的加工性能(特别是注射加工性能)。和耐溶剂性能,通过研究共混物的相容性。微观结构,聚集态结构与性能的关系。探索改善PES-C性能的有效途径。第一部分. PES-C/PSF共混物的结构与性能 利用Fox方程推导式计算了PES-C在富PSF相的含量,PSF在富PES-C相的含量。发现PES-C在PSF中有较好的溶解性。采用TEM.相差显微镜。粘度法等手段研究相容性也得到PES-C/PSF共混物是部分相容性体系的结论。在对共混物相容性影响因素的研究中发现,PSF分子量减小,有利于共混体系的相容性。第二部分,尼龙66/PES-C共混物的结构与性能。PES-C相应的玻璃化转变温度向低温移动。说明在尼龙66的非晶共与非结晶高聚物PES-C有一定相容性。在等速降温过程中,结晶机制不尽相同,在同一温度下随着非晶组分的加入影响了尼龙66的结晶成核与增长,降低了其结晶速率。WAXD的结果表明,随着PES-C的加入,共混物的结晶度下降。M.I.指数表明,在尼龙66为连续相时,共混物具有良好的熔融流动性。从TG曲线看出,共混以后提高了尼龙66的起始分解温度。溶解性实验结果表明。尼龙66的混入了提高了PES-C的耐溶剂性。
Resumo:
本文以PSF,PES-C,PHS,PA,PHE,PHES和PPHE分别为硬段,PDMS为软段,通过过羟胺缩聚不可逆反应合成了7种线性和非线性的二元多嵌段共聚物。以PPO,PSF,PEK-C和PES-C分别为硬段,PHS,PA,PHE和PHES分别为半硬段,PDMS为软段,合成了10种具有多样化结构的三元多嵌段共聚物。此外还在嵌段共聚物基础上引入接枝的PDMS,得到了在同一高分子链上具有PDMS嵌段和接枝两种结构的共聚物。并对不同聚合体系的反应条件及不同类型羟基的反应活性进行了详细的讨论,得到的产物分子量高,成膜性好。力学性能的研究表明,这些多嵌段共聚物都在很宽的温度范围内具有较高且稳定的模量,特别是在硬段-软段的嵌段共聚物中引入具有增容作用的半硬段,得到的三元多嵌段共聚物的动态力学性能和抗张性能都优于同等条件下相对应的二元多嵌段共聚物,其中PPO-PDMS-PHS三元多嵌段共聚物以三种嵌段不同组成的相容相为连续相,PDMS和PPO与PHS相容相为两种分散相,具有较高的力学强度,较好地解决了含有机硅类嵌段共聚物强度低的弱点,同时又保留了嵌段共聚物微相分离的特性。利用TEM观察证实,三元多嵌段共聚物的形态结构出现了许多新的现象。除具有微相分离的基本特征外,还表现出双连续双分散的特征,在适当的嵌段长度和含量时,在PSF-PDMS-PHS体系中观察到一种新的形态-蜂窝状结构,并首次利用TEM在嵌段共聚物中直接观察到非常清晰的界面相。通过XPS和SEM-EDS对含有机硅多嵌段共聚物与空气接触表面的研究证实,在其表面都存在PDMS的富集现象,并较详细地讨论了组成、键接结构、相间相容性和溶剂处理对PDMS表面富集的影响。对PSF-PDMS-PHS/PSF共混物膜表面的研究表明,表面PDMS的富集情况与共混相容性有关,不相容的共混体系,表面PDMS的含量随共混物中PDMS含量的变化出现一临值。对本工作合成的含有机硅多嵌段共聚物的功能性研究表明,各种嵌段之间具有协同性和加和性,作为富氧膜材料,较之PDMS强度和α_(O_2/N_2)提高,其中PHE-PDMS和PPO-PDMS-PHS表现出优异的气体透过行为,可替代现有的富氧膜材料,具有一定应用意义和开发价值。PSF-PDMS-PHS与PTMSP的超薄复合膜,提高了PTMSP的α_(O_2/N_2)和经时稳定性,并且J_(O_2)也稳定在比较高的值。另外,作为高分子表面活性剂、渗透蒸发材料、阻尼材料和抗凝血材料也表现也良好的功能性。通过DSC,DMA对几种不同共混体系的研究证实,具有热效应的共混体系PHS-PDMS/PPO,在PPO分子量高于PHS嵌段的分子量时,仍能得到一共混相容体系。均聚物与三元多嵌段共聚物中两种嵌段有相容性的共混体系PPO-PDMS-PHS/PPO。在均聚物与对应嵌段的分子量相同时,也能得到一相容体系。另外,PPO均聚物对PPO-PDMS-PHS/PS共混体系具有增容作用。
Resumo:
本工作对两种新型的耐热高分子材料——含酞侧基聚芳醚砜(PES-C)和聚芳醚酮(PEK-C)进行了磺化改性,并利用不同金属离子置换的方法得到了钠盐型、铜盐型和铁盐型的改性产物,分别制备了上述各种产物的均质膜并对其各种性能进行了表征。一、改性反应 用98%的浓硫酸在40 ℃和60 ℃的条件下对PES-C、PEK-C进行了磺化改性。结果表明在上述条件下可以得到综合性能(机械强度,气体透过性等)最佳的改性产物,其磺化度(Xs)控制在0.1-0.4之间。通过IR确认了磺化反应的进行,~1H-NMR和~(13)C-NMR等进一步肯定了磺化反应发生在酚酞单元醚氧键的禽位氢原子上,和理论推测相一致也和文献报导的PEEK的磺化反应位置相同。二、性能表征 改性后的PES-C和PEK-C的溶解能力有所下降,由于-SO_3H的极性影响,几乎失去了在卤代烃中的溶解能力,而只能溶于几种强的非质子极性溶剂中,用DSC,动态粘弹谱仪测得磺化后的产物(SPES-C和SPEK-C)的Tg随磺化度的增大而呈线性升高,但在高磺化度(Xs > 0.5)时由于其它因素影响而偏离线性关系。三、气体透过性能采用压力法测定了SPES-C和SPEK- C 的各种改性产物(自由酸型SPES-C-H, 钠盐型SPES-C-Na,铜盐型SPES-C-Cu,铁盐型SPES-C-Fe,SPEK-C与此相同)的氮气、氧气透过率。结果表明与它们各自的原聚合物相比,氮气、氧气的透过率均随磺化度的增加而线性下降,特别是成盐后的产物气体透过率下降更大,此现象说明了引进离子基团后自由体积发生了较大的变化。四、水蒸汽的透过性能 利用透湿杯法分别测定了不同磺化度和不同盐型的水蒸汽透过率。由于磺酸基的引入大大地改善了PEK-C和PES-C的亲水性能,因此水蒸汽的透过率(PH_2O)提高幅度较大。在上述四种改性产物中自由酸型的透水蒸汽率最高,这和-SO_3H与水分子之间有很好的氢键作用是相关的。其它三种盐的PH_2O和Xs之间也呈线性相关性,随Xs的增大而提高。如果同时考虑到气体透过率数据则水蒸汽对氮气的选择性(PH_2O/PN_2)以盐型最佳,其αH_2O N_2可以高达几十万,是一种非常有希望的气体除湿膜的候选材料。
Resumo:
We investigate the dependences of the potential energy surfaces (PES) and the fusion probabilities for some cold fusion reactions leading to super-heavy elements on the nuclear shell effect and pairing energy. It is found that the shell effect plays an important role in the fusion of the super-heavy element while pairing energy's contribution is insignificant. The fusion probabilities and evaporation residue cross sections as functions of the Ge-isotope projectile bombarding Pb-208 are also investigated. It is found that evaporation residue cross sections do not always increase with the increasing neutron number of Ge-isotope
Resumo:
The paper presents a theoretical study of the dynamics of the H + HCl system on the potential energy surface (PES) of Bian and Werner (Bian, W.; Werner, H. -J., J. Chem. Phys. 2000, 112, 220). A time-dependent wave packet approach was employed to calculate state-to-state reaction probabilities for the exchanged and abstraction channels. The most recent PES for the system has been used in the calculations. Reaction probabilities have also been calculated for several values of the total angular momentum J > 0. Those have then been used to estimate cross sections and rate constants for both channels. The calculated cross sections can be compared with the results of previous quasiclassical trajectory calculations and reaction dynamics experimental on the abstraction channel. In addition, the calculated rate constants are in the reasonably good agreement with experimental measurement.
Resumo:
The angular momentum polarization and rotational state distributions of the H-2 and HCl products from the H + HCl reaction are calculated at a relative translational energy of 1.6 eV by using quasiclassical trajectories on two potential energy surfaces, one from G3 surface [T.C. Allison et al., J. Phys. Chem. 100 (1996) 13575], and the other from BW2 surface [W. Bian, H.-J. Werner, J. Chem. Phys. 112 (2000) 220]. Product rotational distributions obtained on the G3 potential energy surface (PES) are much closer to the experimental results (P.M. Aker et al., J. Chem. Phys. 90 (1989) 4795; J. Chem. Phys. 90 (1989) 4809) than the distributions calculated on the BW2 PES. The distributions of P(phi(r)) for the H-2 and HCl products obtained on the G3 PES are similar, whereas the rotational alignment effect of the H-2 product is stronger than that of the HCl product. In contrast to the polarization distributions obtained on the G3 PES, the rotational alignment effect of the two products calculated on the BW2 PES is similar. However, the abstraction reaction is dominated by out-of-plane mechanisms, while the exchange reaction is dominated by in-plane mechanisms. The significant difference of the product rotational polarization obtained on the G3 and BW2 PESs implies that the studies of the dynamical stereochemistry can provide a sensitive test for the accuracy of the PES. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
几种线性高分子量的无定型聚芳醚砜 (酮 )在非质子极性溶剂二甲基乙酰胺 (DMAc)和二甲基甲酰胺 (DMF)中 ,以氟化铯 (CsF)为催化剂进行解聚成环 ,所得环状低聚物由凝胶渗透色谱 (GPC)、高效液相色谱 (HPLC)和激光质谱 (MALDI TOF MS)确认 ,其中酚酞聚醚砜 (PES C)和酚酞聚醚酮 (PEK C)的解聚成环率分别高达 86.3 %和 87.9% .讨论了影响成环率的各种因素 .环状产物又在阴离子引发剂联苯双酚钾的作用下进行开环聚合重新得到高分子量的线性产物.
Resumo:
The effect of polymerization of monomer reactant-polyimide (POI) as the interfacial agent on the interface characteristics, morphology features, and crystallization of poly(ether sulfone)/poly(phenylene sulfide) (PES/PPS) blends were investigated using a scanning electron microscope, FTIR, WAXD, and XPS surface analysis. It was found that the interfacial adhesion was enhanced, the particle size of the dispersed phase was reduced, and the miscibility between PES and PPS was improved by the addition of POI. It was also found that POI was an effective nucleation agent of the crystallization for PPS.
Resumo:
The effects of thermally crosslinkable polymerization of monomer reactant-polyimide (POI) on the miscibility, morphology, and crystallization of partially miscible poly(ether sulfone) (PES)/poly(phenylene sulfide) (PPS) blends were investigated with differential scanning calorimetry and scanning electron microscopy. The addition of POI led to a significant reduction in the size of PPS particles, and the interfacial tension between PPS and crosslinked POI was smaller than that between PES and crosslinked POI. During melt blending, crosslinking and grafting reactions of POI with PES and PPS homopolymers were detected; however, the reaction activity of POI with PPS was much higher than that with PES. The crosslinking and grafting reactions were developed further when blends were annealed at higher temperatures. Moreover, POI was an effective nucleation agent of the crystallization of PPS, but crosslinking and grafting hindered the crystallization of PPS. The final effect of POI on the crystallinity of the PPS phase was determined by competition between the two contradictory factors. The crosslinking and grafting reactions between the two components was controlled by the dosage of POI in the blends, the premixing sequence of POI with the two components, the annealing time, and the temperature.
Resumo:
Gas transport of H-2, CO2, O-2, N-2, and CH4 in a series of cardo polyarylethers were examined over a temperature range of 30 similar to 100 degreesC. These polymers include three poly(aryletherketone)s, two poly(arylethersulfone)s, and one poly(aryletherketoneketone). It was found that the large length/diameter ratio of the polymer repeat unit for cardo polyaryletherketoneketone (PEKK-C) and strong intermolecular interaction in hydrogen-bonded polyarylethersulfone (PES-H) and hydrogen-bonded polyaryletherketone (PEK-H) resulted in a considerable increase in gas permselectivity. Alkyl-substituted polyaryletherketone (PEK-A), bearing a pendant bulky propyl group on the cardo ring, simultaneously exhibited 62.5% higher H-2 permeability and 59.8% higher H-2/N-2 permselectivity than unmodified poly(aryletherketone) (PEK-C). The causes of the trend were interpreted in terms of chain packing density, segmental motion ability, steric factor, and intermolecular interaction of polymers, together with gas kinetic diameter and critical temperature data.