107 resultados para Micro electro mechanical system
Resumo:
A prototype 1.55-μm Si-based micro-opto-electro-mechanical-systems (MOEMS) tunable filter is fabricated, employing surface micromachining technology. Full-width-at-half-maximum (FWHM) of the transmission spectrum is 23 nm. The tuning range is 30 nm under 50-V applied voltage. The device can be readily integrated with resonant cavity enhanced (RCE) detector and vertical cavity surface emitting laser (VCSEL) to fabricate tunable active devices.
Resumo:
Optical filters capable of single control parameter-based wide tuning are implemented and studied. A prototype surface micromachined 1.3μm Si-based MOEMS (micro-opto-electro-mechanical-systems) tunable filter exhibits a continuous and large tuning range of 90 nm at 50 V tuning voltage. The filter can be integrated with Si-based photodetector in a low-cost component for coarse wavelength division multiplexing systems operating in the 1.3μm band.
Resumo:
Lead magnesium niobate-lead titanate (PMN-PT) is an intriguing candidate for applications in many electronic devices such as multi-layer capacitors, electro-mechanical transducers etc. because of its high dielectric constant, low dielectric loss and high strain near the Curie temperature. As an extension of our previous work on Ta-doped PMNT-PT aimed at optimizing the performance and reducing the cost, this paper focuses on the effect of Pb volatilization on the dielectric properties of 0.77Pb(Mg1/3(Nb0.9Ta0.1)2/3)O3-0.23PbTiO3. The dielectric constant and loss of the samples are measured at different frequencies and different temperatures. The phase purity of this compound is determined by X-ray diffraction pattern. It is found that the volatilization during sintering does influence the phase formation and dielectric properties. The best condition is sintering with 0.5 g extra PbO around a 4 g PMNT-PT sample.
Resumo:
The viscometer presented in this paper is suit-able for measuring the viscosity of liquids in micro-litre quantities. It consists of a micro-flow experimental system with a thermostat. Using the measurements of the flow rates and pressure drops of a liquid passing through a microtube, the liquid's viscosity can be calculated from on Hagen-Poiseuille theory. After calibration, the viscometer was used to measure viscosities of deionized water and ethyl alcohol at temperatures ranging from 0 to 40 "C. For both test liquids, the relative deviation of the measured values from those quoted in the literature (obtained using other viscometers) was less than 2.6o/o. The relative uncertainty of the experimental system was reduced to +-l.8% using the relative measuring method. Due to the micro-scale of the test section, only a micro-litre quantity of liquid is needed for a test, this is a potential advantage for measurement of bio-liquid viscosities.
Resumo:
We propose a novel communication technique which utilizes a set of mutually distinguishable optical patterns instead of convergent facula to transmit information. The communication capacity is increased by exploiting the optical spatial bandwidth resources. An optimum detector for this communication is proposed based on maximum-likelihood decision. The fundamental rule of designing signal spatial pattern is formulated from analysis of the probability of error decision. Finally, we present a typical electro-optical system scheme of the proposed communication. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
首先介绍了月表采样的新特点与存在的困难;根据月表环境、月表样品的特点以及嫦娥三期工程中对月表采样的要求,合理地选择了采样方式,研制出了一台六自由度机器人化月表采样器,并且对采样器的采样原理,机械系统和运动原理做了详细的分析;最后在石灰粉上做了采样实验,验证了多功能的机器人化月表采样器的基本功能与可行性。
Resumo:
文章提出了一种基于五自由度机电系统的测控系统设计方法,并从机械系统构成、测控系统结构及软硬件设计方面论述了系统实现技术。针对系统特定的功能要求,文章详细介绍了位姿组合测量和各位姿自由度控制的测控方法,并应用模块化设计和数据流分析方法进行软硬件设计。通过实验进行系统特性分析,得到运行参数指标。实验证明这种设计方法和实现技术合理可行。
Resumo:
轮式移动宜人机器人项目研究的主要目的是开发自主式仿人机器人样机 ,探索先进的机器人理论和技术。轮式移动宜人机器人由正交轮式移动平台、腰部、躯干及头部和双臂组成 ,共 2 1个自由度。整体结构包括 :电源系统、机械系统、控制系统和传感系统。电源系统采用车载电池供电。机械系统包括变刚度结构 ,提高了机器人与人交互作业的安全性。控制系统分为中央协调层和执行层结构。传感系统主要实现关节位置检测、姿态检测、力检测和视觉。文章讨论了此机器人的研究进展。
Resumo:
微制作机器人技术是MEMS技术的一个重要分支,也是当前机器人研究领域的一个热点。本文分析了微操作机器人集成系统的特点,并针对微制作机器人系统研制中涉及的一些关键技术,如驱动、定位、检测和控制等技术进行了论述。
Resumo:
针对远距离声源发射的水声信号微弱、水声接收设备电源能量有限的特点,提出一种功耗小、对无源元件误差灵敏度低、高增益放大的微弱水声信号通用放大电路。系统采用场效应管共源单调谐放大器为前置放大级,由四级级联低功耗运放构成带通滤波放大电路,省去传统的R、C低通网络,实现了对微弱水声信号的高增益放大和海洋背景噪声的归一化处理。通过计算电路网络传递函数极点证明了电路系统的稳定性。海上使用表明系统具有精度高、适应性强、电路稳定性好、功耗小等优点。
Resumo:
通过对光纤微缆的受力分析,结合光纤微缆的特点设计并实现了光纤微缆收放系统.该系统采用恒张力控制收放光纤微缆,使光纤微缆随着水下机器人的运动释放和回收,减小了光纤微缆对水下机器人运动的影响,避免了光纤微缆的缠绕和损伤.
Resumo:
为了使机器人跟踪给定的期望轨线,提出了一种新的基于机器人运动重复性的学习控制法.在这种方法中机器人通过重复试验得到期望运动,这种控制法的优点:一是对于在期望运动附近非线性机器人动力学的近似表达式的线性时变机械系统产生期望运动的输入力矩可不由估计机器人动力学的物理参数形成;二是可以适当的选择位置、速度和加速度反馈增益矩阵,从而加快误差收敛速度;三是加入了加速度反馈,减少了速度反馈,减少了重复试验的次数.这是因为在每次试验的初始时刻不存在位置和速度误差,但存在加速度误差.另外,这种控制法的有效性通过PUMA562机器人的前三个关节的计算机仿真结果得到验证。
Resumo:
在基因芯片分析系统中,基因芯片荧光靶点图像的正确检测识别是基因特异性表达信息提取的必要前提。在荧光靶点检测识别过程中,由于沾污、瑕疵、离焦等因素的影响,荧光靶点图像的信噪比很低,很容易将污点、基片瑕疵等噪声点误识别为荧光靶点,而将沾污的荧光靶点误识别为噪声点。在原算法基础上,为进一步降低误识别率和提高检测精度,提出基于靶点分割图像重心和目标背景面积比的改进的荧光靶点检测识别算法。实验结果表明,与原算法相比,采用新算法将正确识别率提高到90%以上。
Resumo:
The thermal properties of a micro-electromechanical system sensor were analysed by a novel digital moire method. A double-layer micro-cantilever sensor (60 mu m long, 10 mu m width and 2 mu dm thick) was prepared by focused ion beam milling. A grating with frequency of 5000 lines mm- I was etched on the cantilever. The sensor was placed into a scanning electron microscope system with a high temperature device. The observation and recording of the thermal deformation of the grating were realised in real-time as the temperature rose from room temperature to 300 degrees C at intervals of 50 degrees C. Digital moire was generated by interference of the deformed grating and a digital virtual grating. The thermal properties including strain distribution of the sensor and the linear expansion coefficient of polysilicon were accurately measured by the phase-shifted moire patterns.
Resumo:
Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00