48 resultados para Masaryk, T. G. (Tomáš Garrigue), 1850-1937, in fiction
Resumo:
The bioaccumulation of phthalate acid esters (PAEs) from industrial products and their mutagenic action has been suggested to be a potential threat to human health. The effects of the most frequently identified PAE, Di-n-butyl phthalate (DBP), and its biodegradation, were examined by comparison of two small scale plots (SSP) of integrated vertical-flow constructed wetlands. The influent DBP concentration was 9.84 mg l(-1) in the treatment plot and the control plot received no DBP. Soil enzymatic activities of dehydrogenase, catalase, protease, phosphatase, urease, cellulase, beta-glucosidase, were measured in the two SSP after DBP application for 1 month and 2 months, and 1 month after the final application. Both treatment and control had significantly higher enzyme activity in the surface soil than in the subsurface soil (P < 0.001) and greater enzyme activity in the down-flow chamber than in the up-flow chamber (P < 0.05). In the constructed wetlands, DBP enhanced the activities of dehydrogenase, catalase, protease, phosphatase and inhibited the activities of urease, cellulase and beta-glucosidase. However, urease, cellulase, beta-glucosidase activities were restored 1 month following the final DBP addition. Degradation of DBP was greater in the surface soil and was reduced in sterile soil, indicating that this process may be mediated by aerobic microorgansims. DBP degradation fitted a first-order model, and the kinetic equation showed that the rate constant was 0.50 and 0.17 d(-1), the half-life was 1.39 and 4.02 d, and the r(2) was 0.99 and 0.98, in surface and subsurface soil, respectively. These results indicate that constructed wetlands are able to biodegrade organic PA-Es such as DBP. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Hybrid tilapia weighing 4.34 +/- 0.03 g (mean +/- SE) were reared in seawater at 23.8 to 27.0 degrees C for 8 weeks. The control group was fed to satiation twice a day throughout the experiment. The other three groups were deprived of feed for 1, 2, and 4 weeks, respectively, and then fed to satiation during the refeeding period. At the end of the experiment, fish deprived for 1 week had similar body weights to the controls, whereas fish deprived for 2 and 4 weeks had significantly lower body weights than the controls. During the refeeding period, size-adjusted feed intakes and specific growth rates were significantly higher in deprived fish than in the controls, indicating some compensatory responses in these fish. Feed intake and growth rate upon refeeding were higher the longer the duration of deprivation. No significant differences were found in digestibility, feed efficiency or protein and energy retention efficiency between the deprived and control fish during refeeding, suggesting that hyperphagia was the mechanism responsible for increased growth rates during compensatory growth. During refeeding, relative gains in protein, lipid and ash, as proportions of total body weight gain, did not differ significantly among treatment groups. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Sources and distribution of polycyclic aromatic hydrocarbons (PAH) in the Ya-Er Lake area (Hubei, China) sediment cores of 3 ponds in the shallow Ya-Er Lake were investigated for 16 PAH. Analytical procedure included extraction by ultrasonication, clean-up by gel-permeation and quantification by HPLC with fluorescence detection. The total PAH amount in sediment samples of the Ya-Er Lake ranged from 68 to 2242 mu g/kg. Concentrations decreased from pond 1 to pond 3 and from upper to lower sediment layers. In addition a soil sample from Ya-Er Lake area showed a total PAH amount of 58 mu g/kg. The PAH pattern in lower sediment layers were similar to that of the soil sample which indicates an atmospheric deposition into the sediments prior to 1970 only. The PAH profile of upper sediment samples, which differs completely from that of lower layers, may be explained by a gradually increasing input of mixed combustion and raw fuel sources since 1970. Therefore the origin of increased PAH contamination in Ya-Er Lake during the last 3 decades has been probably an industrial waste effluent in pond 1.
Resumo:
Toxic cyanobacteria (blue-green algae) waterblooms have been found in several Chinese water bodies since studies began there in 1984. Waterbloom samples for this study contained Anabaena circinalis, Microcystis aeruginosa and Oscillatoria sp. Only those waterblooms dominated by Microcystis aeruginosa were toxic by the intraperitoneal (i.p.) mouse bioassay. Signs of poisoning were the same as with known hepatotoxic cyclic peptide microcystins. One toxic fraction was isolated from each Microcystis aeruginosa sample. Two hepatotoxic peptides were purified from each of the fractions by high-performance liquid chromatography and identified by amino acid analysis followed by low and high resolution fast-atom bombardment mass spectrometry (FAB-MS). LD50 i.p. mouse values for the two toxins were 245-mu-g/kg (Toxin A) and 53-mu-g/g (Toxin B). Toxin content in the cells was 0.03 to 3.95 mg/g (Toxin A) and 0.18 to 3.33 mg/kg (Toxin B). The amino acid composition of Toxin A was alanine [1], arginine [2], glutamic acid [1] and beta-methylaspartic acid [1]; for Toxin B it was the same, except one of the arginines was replaced with a leucine. Low- and high-resolution FAB-MS showed that the molecular weights were 1,037 m/z (Toxin A) and 994 m/z (Toxin B), with formulas of C49H76O12N13 (Toxin A) and C49H75O12N10 (Toxin B). It was concluded that Toxin A is microcystin-RR and Toxin B is microcystin-LR, both known cyclic heptapeptide hepatotoxins isolated from cyanobacteria in other parts of the world. Sodium borohydride reduction of microcystin-RR yielded dihydro-microcystin-RR (m/z = 1,039), an important intermediate in the preparation of tritium-labeled toxin for metabolism and fate studies.
Resumo:
Infrared absorption in GaAs/AlxGa1-xAs multiple quantum wells is investigated using a polarizer. Two main peaks, with wave numbers 723 and 1092 cm(-1), are observed. The peak with wave number 1092 cm(-1) corresponds to the 0 -> 1 intersubband transition, while the other one corresponds to the intrasubband transition. The polarized absorbance is one order of magnitude higher than the unpolarized one. The authors attribute the intrasubband transition to the plasma oscillation in the quantum wells.
Resumo:
For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavy-and light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount in the WL and the segregation coefficient of the indium atoms from the transition energies of heavy-and light-holes. The variation of the InAs amount in the WL and the segregation coefficient are found to rely closely on the growth modes. In addition, the huge dots also exhibits a strong effect on the evolution of the WL. The observed linear dependence of In segregation coefficient upon the InAs amount in the WL demonstrates that the segregation is enhanced by the strain in the WL.
Resumo:
We demonstrate tunnel magnetoresistance junctions based on a trilayer system consisting of an epitaxial NiMnSb, an aluminum oxide, and a CoFe trilayer. The junctions show a tunneling magnetoresistance of Delta R/R of 8.7% at room temperature which increases to 14.7% at 4.2 K. The layers show a clear separate switching and a small ferromagnetic coupling. A uniaxial in-plane anisotropy in the NiMnSb layer leads to different switching characteristics depending on the direction in which the magnetic field is applied, an effect which can be used for sensor applications. (c) 2006 American Institute of Physics.
Resumo:
The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.
Resumo:
Current-based microscopic defect analysis methods with optical filling techniques, namely current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC), have been used to study defect levels in a high resistivity silicon detector (p(+)-n-n(+)) induced by very high fluence neutron (VHFN) irradiation (1.7x10(15) n/cm(2)). As many as fourteen deep levels have been detected by I-DLTS. Arrhenius plots of the I-DLTS data have shown defects with energy levels ranging from 0.03 eV to 0.5 eV in the energy band gap. Defect concentrations of relatively shallow levels (E(t) < 0.33 eV) are in the order of 10(13)cm(-3), while those for relatively deep levels (E(t) > 0.33 eV) are in the order of 10(14) cm(-3). TSC data have shown similar defect spectra. A full depletion voltage of about 27,000 volts has been estimated by C-V measurements for the as-irradiated detector, which corresponds to an effective space charge density (N-eff) in the order of 2x10(14) cm(-3). Both detector leakage current and full depletion voltage have been observed to increase with elevated temperature annealing (ETA). The increase of the full depletion voltage corresponds to the increase of some deep levels, especially the 0.39 eV level. Results of positron annihilation spectroscopy have shown a decrease of total concentration of vacancy related defects including vacancy clusters with ETA, suggesting the breaking up of vacancy clusters as possible source of vacancies for the formation of single defects during the reverse anneal.
Resumo:
The influence of in-medium nucleon-nucleon cross section on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-40 and Ca-60 + Ca-40; Sn-112 + Sn-112 and Sn-124 + Sn-124 within the isospin dependent quantum molecular dynamics. The calculated result shows that the influence of the in-medium nucleon-nucleon cross section on the isoscaling parameter a is mainly determined by the corresponding number of collisions, both for isospin dependent and isospin independent parameterizations. The mechanisms behind the effects of the in-medium nucleon-nucleon cross sections on the alpha are investigated in more details.