51 resultados para Induced Current
Resumo:
In order to understand the dynamic behavior of submarine pipelines exposed to current and the mechanism of the interaction between current-induced vibration and scour of pipelines on a sandy bottom, an experimental investigation is conducted with a small scale model A test model which can be tested in the flume is set up by taking into account the typical working conditions of the pipelines and by applying the similarity theory. The interactions between the shape of the scour hole and the behavior of the pipeline as well as the flow patterns of the current are detailed, and the interaction mechanism outlined. The effect of vibration of the pipeline on the development of dynamic scour at different stages is found out. The proposed experimental method and test results provide an effective means for design of marine pipelines against scouring.
Resumo:
Most of the existing researches either focus on vortex-induced-vibrations (VIV) of a pipeline near a rigid boundary, or on seabed scour around a fixed pipeline. In the fields, pipeline vibration and seabed scour are actually always coupled. Based on the similarity analysis, a series of tests were conducted with a hydro-elastic facility to investigate the influence of pipe vibration on the local scour and the effects of scour process on the pipeline dynamic responses. Experimental results indicate that, there exist two phases in the process of sand scouring around the pipeline with small embedment, i.e. Phase I: scour beneath pipe without VIV, and Phase II: scour with VIV of pipe. It is also found that the gap-to-diameter ratio (e/D) has much effect upon the scour depth for the fixed pipes. For a given value of e/D, the vibrating pipes with close proximity to seabed may induce a deeper scour hole than the fixed ones. Within the examined gap-to-diameter ratio range (425 < e/D < 0.75), the influences of gap-to-diameter ratio on the maximum values of scour-depth for the case of vibrating pipes are not as much as those for the case of fixed pipes.
Resumo:
We have proposed a device, a superconducting-lead/quantum-dot/normal-lead system with an ac voltage applied on the gate of the quantum dot induced by a microwave, based on the one-parameter pump mechanism. It can generate a pure charge- or spin-pumped current. The direction of the charge current can be reversed by pushing the levels across the Fermi energy. A spin current arises when a magnetic field is applied on the quantum dot to split the two degenerate levels, and it can be reversed by reversing the applied magnetic field. The increase of temperature enhances these currents in certain parameter intervals and decreases them in other intervals. We can explain this interesting phenomenon in terms of the shrinkage of the superconducting gap and the concepts of photon-sideband and photon-assisted processes.
Resumo:
Linearly polarized light at normal incidence injects a spin current into a strip of two-dimensional electron gas with Rashba spin-orbit coupling. The authors report observation of an electric current when such light is shed on the vincinity of the junction in a crossbar-shaped InGaAs/InAlAs quantum well Rashba system. The polarization dependence of this electric current was experimentally observed to be the same as that of the spin current. The authors attribute the observed electric current to the scattering of the optically injected spin current at the crossing. (c) 2007 American Institute of Physics.
Resumo:
The converse effects of spin photocurrent and current induced spin polarization are experimentally demonstrated in a two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured for the same system from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin-polarization, and spin-orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates a system with dominating structure inversion asymmetry.
Resumo:
The influence of electric fields on surface migration of Gallium (Ga) and Nitrogen (N) adatoms is studied during GaN growth by molecular beam epitaxy (MBE). When a direct current (DC) is used to heat the sample, long distance migration of Ga adatoms and diffusion asymmetry of N adatoms at steps are observed. On the other hand, if an alternating current (AC) is used, no such preferential adatom migration is found. This effect is attributed to the effective positive charges of surface adatoms. representing an effect of electro-migration. The implications of such current-induced surface migration to GaN epitaxy are subsequently investigated. It is seen to firstly change the distribution of Ga adatoms on a growing surface, and thus make the growth to be Ga-limited at one side of the sample but N-limited at the other side. This leads to different optical qualities of the film and different morphologies of the surface. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We observed the decrease of the hysteresis effect and the transition from the stable to the dynamic domain regime in doped superlattices with increasing temperature. The current-voltage characteristics and the behaviours of the domain boundary are dominated by the temperature-dependent lineshape of the electric field dependence of the drift velocity (V(F)), As the peak-valley ratio in the V(F) curve decreases with increasing temperature, the hysteresis will diminish and temporal current self-oscillations will occur. The simulated calculation, which takes the difference in V(F) curves into consideration, gives a good agreement with the experimental results.
Resumo:
We report experiments on high de current stressing in commercial III-V nitride based heterojunction light-emitting diodes. Stressing currents ranging from 100 mA to 200 mA were used. Degradations in the device properties were investigated through detailed studies of the current-voltage (I-V) characteristics, electroluminescence, deep-level transient Fourier spectroscopy and flicker noise. Our experimental data demonstrated significant distortions in the I-V characteristics subsequent to electrical stressing. The room temperature electro-luminescence of the devices exhibited a 25% decrement in the peak emission intensity. Concentration of the deep-levels was examined by deep-level transient Fourier spectroscopy, which indicated an increase in the density of deep-traps from 2.7 x 10(13) cm(-3) to 4.2 x 10(13) cm(-3) at E-1 = E-C - 1.1 eV. The result is consistent with our study of 1/f noise, which exhibited up to three orders of magnitude increase in the voltage noise power spectra. These traps are typically located at energy levels beyond the range that can be characterized by conventional techniques including DLTS. The two experiments, therefore, provide a more complete picture of trap generation due to high dc current stressing.
Resumo:
We investigate the influence of a transverse magnetic field on the current-voltage characteristics of a doped GaAs/AlAs superlattice at 1.6 K. The current transport regimes-stable electric field domain formation and current selfoscillation-are observed with increasing transverse magnetic field up to 13 T. Magnetic-field-induced redistribution of electron momentum and energy is identified as the mechanism triggering the switching over of one process to another lending to a change in the dependence of the effective electron drift velocity on electric field. Simulation yields excellent agreement with observed results.
Resumo:
An analytical model is proposed to understand backgating in GaAs metal-semiconductor field-effect transistors (MESFETs), in which the effect of channel-substrate (CS) junction is included. We have found that the limitation of CS junction to leakage current will cause backgate voltage to apply directly to CS junction and result in a threshold behavior in backgating effect. A new and valuable expression for the threshold voltage has been obtained. The corresponding threshold electric field is estimated to be in the range of 1000-4000 V/cm and for the first time is in good agreement with reported experimental data. More, the eliminated backgating effect in MESFETs that are fabricated on the GaAs epitaxial layer grown at low temperature is well explained by our theory. (C) 1997 American Institute of Physics.
Resumo:
The influence of electric fields on surface migration of Gallium (Ga) and Nitrogen (N) adatoms is studied during GaN growth by molecular beam epitaxy (MBE). When a direct current (DC) is used to heat the sample, long distance migration of Ga adatoms and diffusion asymmetry of N adatoms at steps are observed. On the other hand, if an alternating current (AC) is used, no such preferential adatom migration is found. This effect is attributed to the effective positive charges of surface adatoms. representing an effect of electro-migration. The implications of such current-induced surface migration to GaN epitaxy are subsequently investigated. It is seen to firstly change the distribution of Ga adatoms on a growing surface, and thus make the growth to be Ga-limited at one side of the sample but N-limited at the other side. This leads to different optical qualities of the film and different morphologies of the surface. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
It is known that the press formability and the elongation of laser textured sheet are improved, and the service life of textured roll is longer than that of the un-textured roll due to hardening of the treated surface. One of the goals to develop high repetitive rate YAG laser-induced discharge texturing (LIDT) is to get deeper hardening zone. By observing and measuring cross-section of LIDT spots in different discharge conditions, it is found that the single-crater, which is formed by the discharge conditions of anode, which is covered by an oil film and with rectangular current waveform, has the most depth of heat affected zone (HAZ) comparing with other crater shapes when discharge energy is the same. The depth of HAZ is mainly depends on pulse duration when the discharge spot is single-crater. The results are analyzed.
Resumo:
Unlike previous mechanical actuator loading methods, in this study, a hydrodynamic loading method was employed in a flow flume for simulating ocean currents induced submarine pipeline stability on a sandy seabed. It has been observed that, in the process of pipeline losing lateral stability in currents, there usually exist three characteristic times: (1) onset of sand scour; (2) slight lateral displacement of pipeline; and (3) breakout of pipeline. An empirical linear relationship is established between the dimensionless submerged weight of pipeline and Froude number for describing pipeline lateral stability in currents, in which the current-pipe-soil coupling effects are reflected. Scale effects are examined with the method of "modeling of models," and the sand particle size effects on pipeline stability are also discussed. Moreover, the pipeline stability in currents is compared with that in waves, which indicates that the pipeline laid directly upon the sandy seabed is more laterally stable in currents than in waves.
Resumo:
The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
Resumo:
A vortex-induced vibration (VIV) model is presented for predicting the nonlinear dynamic response of submerged floating tunnel (SFT) tethers which are subjected to wave, current and tunnel oscillatory displacements at their upper end in horizontal and vertical directions. A nonlinear fluid force formula is introduced in this model, and the effect of the nonlinearity of tether is investigated. First, the tunnel is stationary and the tether vibrates due to the vortices shedding. The calculated results show that the cross-flow amplitude of VIV decreases compared with the linear model. However the in-line amplitude of VIV increases. Next, the periodical oscillation of tunnel is considered. The oscillation caused by wave forces plays the roles of parametric exciter and forcing exciter to the VIV of tether. The time history of displacement of the tether mid-span is obtained by the proposed model. It is shown that the in-line amplitude increases obviously and the corresponding frequency is changed. The cross-flow amplitude exhibits a periodic behavior.