113 resultados para Elemental sulfur


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO2, HCl, and SO2 were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration Of SO2 is relatively low because alkaline metal in the fuel ash can absorb SO2. The concentration of CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfuration ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exciton localization in Te-rich ZnSTe epilayers has been studied by photoluminescence (PL) and time-resolved PL. The sulfur-related exciton emission is found to dominate the radiative recombination at low temperature and is shifted to the low energy with the increase of S concentration. By measuring the PL dependence on temperature and by analyzing the PL decay process, we have clarified the localization nature of the sulfur-related exciton emission. Furthermore, the difference of the localization effect in Te- and S-rich ZnSTe is also compared and discussed. © 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced near-infrared photoluminescence (PL) from sulfur-related isoelectronic luminescent centers in silicon was observed from thermally quenched sulfur-implanted silicon in which additional copper or silver ions had been coimplanted. The PL from the sulfur and copper coimplanted silicon peaked between 70 and 100 K and persisted to 260 K. This result strongly supports the original conjecture from the optical detection of magnetic resonance studies that the strong PL from sulfur-doped silicon comes from S-Cu isoelectronic complexes [Frens , Phys. Rev. B 46, 12316 (1992); Mason , ibid. 58, 7007 (1998).]. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of sulfur vapor pressure in preparing the FeS2 films has been discussed and some incongruous views about sulfur pressure have been clarified in this paper based on experimental results and theoretical analysis. It is shown that lower sulfur pressures than the saturation value only result in poorer crystallization and worse performances, and in other words the FeS2 films could be optimized through improving the sulfur pressure till the saturation point. However for a certain temperature the sulfur pressure is limited by its saturated vapor pressure, and further increase of the sulfur quantity reacted with Fe films has little influence on the structure and properties of the pyrite films. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoreflectance (PR) has been used to study surface electronic properties (electric field, Fermi level pinning, and density of surface states) of undoped-n(+) (UN+) GaAs treated in the solution of ammonium sulfide in isopropanol. Complex Fourier transformation (CFT) of PR spectra from passivated surface shows that the sulfur overlay on GaAs surface makes no contribution to Franz-Keldysh oscillations (FKOs). The barrier height measured by PR is derived from surface states directly, rather than the total barrier height, which includes the potentials derived from Ga-S and As-S dipole layers. Comparing with native oxidated surface, the passivation leads to 80 meV movement of surface Fermi level towards the conduction band minimum, and reduction by more than one order in density of surface states. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures in iron- and sulphur-doped InP crystals were studied using both electron microscopy and electron diffraction. A modulated structure has been found in S-doped InP crystal, where the commensurate modulations corresponded to periodicities of 0.68 nm and 0.7 nm in real space and were related to the reflections of the cubic lattice in [111] and [113BAR] directions; they were indexed as q111* = 1/2(a* + b* + c*) and q113BAR* = 1/4(-a* - b* + 3c*), respectively. Single atomic layers of iron precipitate were observed, with preferred orientations along which precipitates are formed. Simulated calculations by means of the dynamical theory of electron diffraction using models for the precipitate structure were in good agreement with our experimental results. The relation between the modulated structure and the precipitates is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnTe1-xSx epitaxial layers grown on GaAs by molecular-beam epitaxy were studied by photoluminescence (PL) as a function of temperatures, excitation powers, and hydrostatic pressures. A sulfur-related emission peak, labeled as P-2, is identified as a deep-level emission by hydrostatic-pressure PL measurement. This indicates that sulfur atoms form isoelectronic centers in a ZnTe matrix. The results qualitatively agree with the theoretical prediction and show experimental evidence of isoelectronic S in ZnTe. A model is proposed to explain the emission mechanisms in the ZnTe1-xSx system with small x values.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: