56 resultados para Current-Type Interface


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly c-axis oriented ZnO thin films were deposited on Si substrates by the pulsed laser deposition (PLD) method. At different growth temperatures, 200 nm silver films as the contact metal were deposited on the ZnO thin films. The growth temperatures have great influence on the crystal quality of Ag films. Current-voltage characteristics were measured at room temperature. The Schottky contacts between Ag and ZnO thin films were successfully obtained when silver electrodes were deposited at 150A degrees C and 200A degrees C. Ohmic contacts were formed while the growth temperatures were lower than 150A degrees C or higher than 200A degrees C. After analysis, the forming of Ag/ZnO Schottky contacts was shown to be dependent on the appearance of the p-type inversion layer at the interface between Ag and ZnO layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Si-doped nonpolar a-plane GaN films were grown on nanopatterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) system. The structure, morphology and field emission properties of the sample were studied by means of high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and field emission measurement. The XRD analysis shows that the sample is a nonpolar a-plane (11 (2) over bar0) GaN film. The field emission measurement shows that the nonpolar GaN films exhibit excellent field emission properties with a threshold emission field of as low as 10 V/mu m at a current density of 0.63 mu A/cm(2), and a high field emission current density of 74 mA/cm(2) at an applied field of 24 V/mu m. Moreover, the Fowler-Nordheirn plot of the sample fits a near linear relation. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The leakage mechanism of GaN-based p-i-n (p-AlGaN/i-GaN/n-GaN) UV detector has been investigated. With the same dislocation density, devices made from material with higher density of V-pits on surface produce larger leakage current. SEM images show that some V-pits penetrate into i-GaN layer, sometimes even the n-GaN layer. If p-ohmic contact metal (Ni/Au) deposits in the V-pits, Schottky contact would be formed at the interface of metal and i-GaN, or form ohmic contact at the interface of metal and n-GaN. The existence of parallel Schottky junction and ohmic contact resistance enhances the leakage current greatly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a systematical study on the molecular beam epitaxy growth and optical property of (GaAs1-xSbx/In-y Ga1-yAs)/GaAs bilayer quantum well (BQW) structures. It is shown that the growth temperature of the wells and the sequence of layer growth have significant influence on the interface quality and the subsequent photoluminescence (PL) spectra. Under optimized growth conditions, three high-quality (GaAsSb0.29/In0.4GaAs)/GaAs BQWs are successfully fabricated and a room temperature PL at 1314 nm is observed. The transition mechanism in the BQW is also discussed by photoluminescence and photoreflectance measurements. The results confirm experimentally a type-II band alignment of the interface between the GaAsSb and InGaAs layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By integrating a three-barrier, two-well resonant tunneling structure with a 1.2-mu m-thick, slightly doped n-GaAs layer, a photoinduced voltage shift on the order of magnitude of 100 mV in resonant current peaks has been verified at an irradiance of low light power density. The 1.2-mu m-thick, slightly doped n-GaAs layer manifests itself of playing an important role in enhancing photoelectric sensitivity. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First, GaSb epilayers were grown on (001) GaAs substrates by molecular beam epitaxy. We determined that the GaSb layers had very smooth surfaces using atomic force microscopy. Then, very short period InAs/ GaSb superlattices (SLs) were grown on the GaSb buffer layer. The optical and crystalline properties of the superlattices were studied by low-temperature photoluminescence spectra and high resolution transition electron microscopy. In order to determine the interface of SLs, the samples were tested by Raman-scattering spectra at room temperature. Results indicated that the peak wavelength of SLs with clear interfaces and integrated periods is between 2.0 and 2.6 mu m. The SL interface between InAs and GaSb is InSb-like.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.5 mu m n-type InGaAsP/InGaAsP modulation-doped multiple quantum well (MD-MQW) DFB lasers have been fabricated successfully by low pressure metal organic chemical vapour deposition (LP-MOCVD) technology. The experimental results indicate that n-type MD-MQWs can effectively reduce the threshold Current compared with conventional multiple quantum well DFB lasers. Theoretical analysis indicates that such an effect is due to the much smaller absorption loss and lower Auger recombination, compared with that in an undoped MQW structure. Moreover, the introduction of n-type dopant of suitable levels of concentration in the barrier layers enhances the dynamic characteristics of DFB lasers, due to a coupling between the adjacent quantum well layers and tunnelling-assisted injection, which can reduce the relatively long capture time and increase the effective differential gain 1/X dG/dn .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the impact of a wide bandgap p-type hydrogenated nanocrystalline silicon (nc-Si:H) on the performances of hydrogenated amorphous silicon (a-Si:H) based solar cells. The player consists of nanometer-sized Si crystallites and has a wide effective bandgap determined mainly by the quantum size-confinement effect (QSE). By incorporation of this p-layer into the devices we have obtained high performances of a-Si:H top solar cells with V-infinity=1.045 V and FF=70.3 %, and much improved mid and bottom a-SiGe:H cells, deposited on stainless steel (SS) substrate. The effects of the band-edge mismatch at the p/i-interface on the I-V characteristics of the solar cells arc discussed on the bases of the density-functional approach and the AMPS model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel silicon structure consisting of a silicon-on-defect layer (SODL), with enhanced surface Hall mobility in the surface layer on a buried defect layer (DL), has been discovered [J. Li, Nucl. Instr. and Meth. B59/60 (1991) 1053]. SODL material was formed by using proton implantation and subsequent two-step annealing. The implantation was carried out with a Varian 350D ion implanter. Based on the discovery, a standard measurement method (current-voltage curve method) was adopted to measure the true resistivity value of the DL in order to replace the spreading resistivity measurement by which the true resistivity in seriously defective silicon cannot be obtained. By adopting the current-voltage current method, the true resistivity value of the DL is measured to be 4.2 x 10(9) OMEGA cm. The SODL material was proved to be a silicon-on-insulator substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultraviolet and X-ray photoemission spectroscopies (UPS and XPS) have been employed to SnO2 and its interface with P-type a-SiCx:H. The HeI valence band spectra of SnO2 show that the valence band maximum (VBM) shifts from 4.7 eV to 3.6 eV below the Fermi level (E(F)), and the valence band tail (VBT) extends up to the E(F), as a consequence of H-plasma treatments. The work function difference between SnO2 and P a-SiCx:H is found to decrease from 0.98 eV to 0.15 eV, owing to the increase of the work function of the treated SnO2. The reduction of SnO2 to metallic Sn is also observed by XPS profiling, and it is found that this leads to a wider interfacial region between the treated SnO2 and the successive growth of P a-SiCx:H.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold current density in a wide temperature range are analyzed and the negative characteristic temperature and oscillatory characteristic temperature appearing in that temperature range are discussed. Also,the improvement of quantum dot lasers' performance is investigated through vertical stacking and p-type doping and the optimal dot density, which corresponds to minimal threshold current density,is calculated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using thermal evaporation, Ti/6H-SiC Schottky barrier diodes (SBD) were fabricated. They showed good rectification characteristics from room temperature to 200degreesC. At low current density. the current conduction mechanism follows the thermionic emission theory. These diodes demonstrated a low reverse leakage current of below 1 X 10(-4)Acm(-2). Using neon implantation to form the edge termination, the breakdown voltage was improved to be 800V. In addition. these SBDs showed superior switching characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have designed and fabricated the visible vertical-cavity surface-emitting lasers (VCSEL's) by using metalorganic vapor phase epitaxy (MOVPE). We use the 8 lambda optical cavities with 3 quantum wells in AlGaInP/AlGaAs red VCSEL's to reduce the drift leakage current and enhance the model gain in AlGaInP active region. The structure has a p-type stack with 36 DBR pairs on the top and an n-type with 55-1/2 pairs on the bottom. Using micro-area reflectance spectrum, we try to get a better concordance between the center wavelength of DBR and the emitting wavelength of the active region. We used a component graded layer of 0.05 lambda thick (x = 0.5 similar to 0.9) at the p-type DBR AlGaAs/AlAs interface to reduce the resistance of p-type DBR. We use selective oxidation to define the current injection path. Because the oxidation rate of a thick layer is faster than a thinner one, we grown a thick AlAs layer close to the active region. In this way, we got a smaller active region for efficient confinement of injected carriers (the aperture area is 3 x 3 mu m) to reduce the threshold and, at the same time, a bigger conductive area in the DBR layers to reduce the resistance. We employ Zn doping on the p-side of the junction to improve hole injection and control the Zn dopant diffusion to get proper p-i-n junction. At room temperature, pulse operation of the laser has been achieved with the low threshold current of 0.8mA; the wavelength is about 670nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the impact of a wide bandgap p-type hydrogenated nanocrystalline silicon (nc-Si:H) on the performances of hydrogenated amorphous silicon (a-Si:H) based solar cells. The player consists of nanometer-sized Si crystallites and has a wide effective bandgap determined mainly by the quantum size-confinement effect (QSE). By incorporation of this p-layer into the devices we have obtained high performances of a-Si:H top solar cells with V-infinity=1.045 V and FF=70.3 %, and much improved mid and bottom a-SiGe:H cells, deposited on stainless steel (SS) substrate. The effects of the band-edge mismatch at the p/i-interface on the I-V characteristics of the solar cells arc discussed on the bases of the density-functional approach and the AMPS model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An approximate theoretical expression for the current induced by long internal solitary waves is presented when the ocean is continuously or two-layer stratified. Particular attention is paid to characterizing velocity fields in terms of magnitude, flow components, and their temporal evolution/spatial distribution. For the two-layer case, the effects of the upper/lower layer depths and the relative layer density difference upon the induced current are further studied. The results show that the horizontal components are basically uniform in each layer with a shear at the interface. In contrast, the vertical counterparts vary monotonically in the direction of the water depth in each layer while they change sign across the interface or when the wave peak passes through. In addition, though the vertical components are generally one order of magnitude smaller than the horizontal ones, they can never be neglected in predicting the heave response of floating platforms in gravitationally neutral balance. Comparisons are made between the partial theoretical results and the observational field data. Future research directions regarding the internal wave induced flow field are also indicated.