47 resultados para Corpo formalmente real
Resumo:
This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.
Resumo:
An important concept proposed in the early stage of robot path planning field is the shrinking of the robot to a point and meanwhile expanding of the obstacles in the workspace as a set of new obstacles. The resulting grown obstacles are called the Configuration Space (Cspace) obstacles. The find-path problem is then transformed into that of finding a collision free path for a point robot among the Cspace obstacles. However, the research experiences obtained so far have shown that the calculation of the Cspace obstacles is very hard work when the following situations occur: 1. both the robot and obstacles are not polygons and 2. the robot is allowed to rotate. This situation is even worse when the robot and obstacles are three dimensional (3D) objects with various shapes. Obviously a direct path planning approach without the calculation of the Cspace obstacles is strongly needed. This paper presents such a new real-time robot path planning approach which, to the best of our knowledge, is the first one in the robotic community. The fundamental ideas are the utilization of inequality and optimization technique. Simulation results have been presented to show its merits.
Resumo:
实时数据库的结构化查询语言RTSQL(Real-Time SQL)是实时数据库研究的一项重要内容.论文详细论述了RTSQL的一种设计方法,即扩展SQL92标准以支持实时数据库的要求,构建RTSQL语言的方法.文章还介绍了RTSQL在Agilor实时数据库系统中的实现方式.在文章最后给出了RTSQL进一步研究的思路和建议。
Resumo:
Nankai University
Resumo:
Based on the data processing technologies of interferential spectrometer, a sort of real-time data processing system on chip of interferential imaging spectrometer was studied based on large capacitance and high speed field programmable gate array( FPGA) device. The system integrates both interferograrn sampling and spectrum rebuilding on a single chip of FPGA and makes them being accomplished in real-time with advantages such as small cubage, fast speed and high reliability. It establishes a good technical foundation in the applications of imaging spectrometer on target detection and recognition in real-time.
Resumo:
Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.
Resumo:
Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.
Resumo:
An external cavity semiconductor laser interferometer used to measure far distance micro-vibration in real time is proposed. In the interferometer, a single longitudinal mode and excellent coherent characteristic grating external cavity semiconductor laser is constructed and acted as a light source and a phase compensator. Its coherent length exceeds 200 meters. The angle between normal and incidence beam of the far object is allowed to change in definite range during the measurement with this interferometer, and this makes the far distance interference measurement easier and more convenient. Also, it is not required to keep the amplitudes of the first and second harmonic components equal, and then the dynamic range is increased. A feedback control system is used to compensate the phase disturbance between the two interference beams introduced by environmental vibration.