219 resultados para Coherent light emission


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaIn2O4:xEu(3+) (x=0.5%,1.0%,1.5%) phosphors were prepared by the Pechini sol-gel process [U.S. Patent No. 3,330,697 (1967)] and characterized by x-ray diffraction and photoluminescence and cathodoluminescence spectra as well as lifetimes. Under the excitation of 397 nm ultraviolet light and low voltage electron beams, these phosphors show the emission lines of Eu3+ corresponding to D-5(0,1,2,3)-F-7(J) (J=0,1,2,3,4) transitions from 400 to 700 nm (whole visible spectral region) with comparable intensity, resulting in a white light emission with a quantum efficiency near 10%. The luminescence mechanism for Eu3+ in CaIn2O4 has been elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors report a random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran doped polystyrene thin films by introducing polystyrene nanoparticles. The aspects of concentration and diameter of polystyrene nanoparticles have been intensively investigated and found that the lasing occurs due to the scattering role of polystyrene nanoparticles. The devices emit a resonance multimode peak centered at a wavelength of 630 nm with a mode linewidth of less than 0.35 nm and exhibit threshold excitation intensity of as low as 0.06 mJ pulse(-1) cm(-2). The microscopic laser cavities formed by multiple scattering have been captured. The demonstration of random laser opens up the possibility of using organic scattering as alternative sources of coherent light emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four novel thermally stable poly(aryl ether)s, e.g., P3F, P5F, P2A3F, and P2A5K containing ter- or pentafluorene units in the side chains for efficient blue light emission have been designed and synthesized. All the polymers show the optical properties identical to the corresponding monomers and are amorphous with higher glass transition temperature (T-g) than their monomeric Counterparts. The polymer light-emitting diodes (PLEDs) were fabricated with the device structure of ITO/(PEDOT:PSS)/polymer/Ca/Al. The incorporation of diphenylamine group to oligofluorene terminals significantly reduces the hole-injection energy barrier in PLEDs. The devices based on P2A3F and P2A5F show the luminous efficiencies of 1.2 and 2.0 cd/A at a brightness of 300 cd/m(2) with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.15, 0.13) and (0.19, 0.20), respectively. All these indicate that the high-performance light-emitting polymers can be synthesized with the traditional condensation polymerization through careful design of polymer structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonpolar m-plane (1 (1) over bar 00) thin film GaN and InGaN/GaN light-emitting diodes (LEDs) grown by metal-organic chemical vapor deposition on LiAlO2 (100) substrates are reported. The LEDs emit green light with output power of 80 mu W under a direct current of 20 mA for a 400x400 mu m(2) device. The current versus voltage (I-V) characteristic of the diode shows soft rectifying properties caused by defects and impurities in the p-n junction. The electroluminescence peak wavelength dependence on injection current, for currents in excess of 20 mA, saturates at 515-516 nm. This proves the absence of polarization fields in the active region present in c-plane structures. The light output intensity versus current (L-I) characteristic of the diode exhibits a superlinear relation at low injection current caused by nonradiative centers providing a shunt path and a linear light emission zone at high current level when these centers are saturated. (c) 2007 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wurtzite stalactite-like quasi-one-dimensional ZnS nanoarrays with ZnO protuberances were synthesized through a thermal evaporation route. The structure and morphology of the samples are studied and the growth mechanism is discussed. X-ray diffraction (XRD) results show both the ZnS stem and the ZnO protuberances have wurtzite structure and show preferred [001] oriented growth. The photoluminescence and field emission properties have also been investigated. Room temperature photoluminescence result shows it has a strong green light emission, which has potential application for green light emitter. Experimental results also show that the stalactite arrays have a good field emission property, with turn-on field of 11.4 V/mu m, and threshold field of 16 V/mu m. The ZnO protuberances on the ZnS stem might enhance the field emission notably.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 degrees C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 degrees C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 degrees C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitrogen-doped beta-Ga2O3 nanowires (GaO NWs) were prepared by annealing the as-grown nanowires in an ammonia atmosphere. The optical properties of the nitrogen-doped GaO NWs were studied by measurements of the photoluminescence and phosphorescence decay at the temperature range between 10 and 300 K. The experimental results revealed that nitrogen doping in GaO NWs induced a novel intensive red-light emission around 1.67 eV, with a characteristic decay time around 136 mus at 77 K, much shorter than that of the blue emission (a decay time of 457 mus). The time decay and temperature-dependent luminescence spectra were calculated theoretically based on a donor-acceptor pair model, which is in excellent agreement with the experimental data. This result suggests that the observed novel red-light emission originates from the recombination of an electron trapped on a donor due to oxygen vacancies and a hole trapped on an acceptor due to nitrogen doping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two silicon light emitting devices with different structures are realized in standard 0.35 mu m complementary metal-oxide-semiconductor (CMOS) technology. They operate in reverse breakdown mode and can be turned on at 8.3 V. Output optical powers of 13.6 nW and 12.1 nW are measured at 10 V and 100 mA, respectively, and both the calculated light emission intensities are more than 1 mW/Cm-2. The optical spectra of the two devices are between 600-790 nm with a clear peak near 760 nm..

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm(2) only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current density can be reduced remarkably compared with the free-running QD gain device.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

White light emission from tandem organic light-emitting diodes consisting of blue and red light units separated by a transparent interconnecting layer of Al/WO3/Au has been realized. The devices have a structure of indium-tin-oxide (ITO)/molybdenum oxide (MoO3) (8 nm)/N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB)(100 nm)/p-bis(p-N, N-diphenyl-aminostyryl) benzene) (DSA-ph): 2-methyl-9,10-di(2-naphthyl) anthracene (MADN)(40 nm)/tris(8-hydroxylquinoline) aluminium (Alq(3)) (10 nm)/LiF(1 nm)/Al(2 nm)/WO3(3 nm)/Au(16 nm)/MoO3(5 nm)/NPB(60 nm)/Alq(3): 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)(30 nm)/Alq3(30 nm)/LiF(1 nm)/Al(150 nm).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate an approach for realizing colour-controllable light emission from top-emitting organic light-emitting diodes (TEOLEDs) by utilizing exterior multilayer films overlaid on them. The emissive colour varies from blue to red for the TEOLED with green tris(8-quinolinolato) aluminium as the emissive layer by tuning the exterior multilayer films. The theoretical simulation of the electroluminescence for the colour tunable TEOLEDs is demonstrated and accords well with experimental results. The advantage of this approach is that the optical and electrical characteristics of the TEOLED can be controlled individually and hence provides the feasibility to realize a full-colour display by using white TEOLEDs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distributed Bragg reflectors (DBR) with different reflection wavelengths were designed, and were used to fabricate microcavity organic light-emitting diodes (OLEDs) based on tris(8-hydroxyquinoline)-aluminum (Alq(3)) as the emitter and N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB) as the hole-transporting layer. The microcavity was composed of DBR dielectric mirror and metal electrode aluminum (Al) mirror. Some effects of vertical optical Fabry-Perot microcavity on spontaneous emission in OLEDs were investigated. Spectral narrowing, enhancement of emitting intensity and anglular dependence of emission were observed due to the microcavity effect. It was found experimentally that the utilization of DBR is a better method to adjust the emissive mode in the resonant cavity in OLEDs well. Thus the realization of different color light emission becomes possible by the combination of carefully designed microcavity and electroluminescent organic semiconductors in a single LED.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Strong supramolecular interactions, which induced tight packing and rigid molecules in crystals of cyano substituent oligo(para-phenylene vinylene) (CN-DPDSB), are the key factor for the high luminescence efficiency of its crystals; opposite to its isolated molecules in solution which have very low luminescence efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The synthesis and characterization of two new polyphenylphenyl compounds is reported. One compound (CPP) acts as a blue light-emitting material, but contains strong electron-accepting groups that form exciplexes with electron-donating arylamines that are widely used as hole-transporting materials. Inserting a layer of the other compound into the organic light-emitting diodes (see figure) suppresses the formation of exciplexes, and gives high-efficiency blue-light emission from the CPP layer.