22 resultados para Art 117 Código de Comercio
Resumo:
Electro-optical modulator with dual capacitors is designed and based on this design basic configuration of device is realized in laboratory. Exceeding GHz switching speed and high phase modulation efficiency can be expected with this device.
Resumo:
The theoretical method to design negative refractive index metamaterials by single negative permittivity metamaterials is presented. By designing the electric and magnetic response metamaterials separately, the complexity of the design work can be simplified a lot. For the magnetic response metamaterials, the metallic post structure is adopted. Varying the height of the post, the response wavelength can be adjusted linearly. For electric metamaterials, wire-mesh structure is adopted. The effective material parameters, including refractive index, impedance, permittivity and permeability are given. Such a structure has negative refractive index during a broad frequency band and easy to design.
Resumo:
We propose a novel optical fiber-to-waveguide coupler for integrated optical circuits. The proper materials and structural parameters of the coupler, which is based on a slot waveguide, are carefully analyzed using a full-vectorial three dimensional mode solver. Because the effective refractive index of the mode in a silicon-on-insulator-based slot waveguide can be extremely close to that of the fiber, a highly efficient fiber-to-waveguide coupling application can be realized. For a TE-like mode, the calculated minimum mismatch loss is about 1.8dB at 1550nm, and the mode conversion loss can be less than 0.5dB. The discussion of the present state-of-the-art is also involved. The proposed coupler can be used in chip-to-chip communication.
Resumo:
Based on the semiconductor laser whose spectral line with width is compressed to be less than 1.2Mhz, a system was designed to measure and improve the amplitude and frequency of the real-time microvibration with sinusoidal modulation. real-time microvibration measurement was executed without alignment problem in the interferometry; and low-frequency disturbance of environment could be eliminated. Suggestions were also given to consummate the system. The system also has resistance against the low frequency disturbance of the environment.
Resumo:
Nano-patterning sapphire substrates technique has been developed for nitrides light-emitting diodes (LEDs) growths. It is expected that the strain induced by the lattice misfits between the GaN epilayers and the sapphire substrates can be effectively accommodated via the nano-trenches. The GaN epilayers grown on the nano-patterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) are characterized by means of scanning electron microscopy (SEM), high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about 46% increment in device performance is measured for the InGaN/GaN blue LEDs grown on the nano-patterned sapphire substrates.
Resumo:
Thick GaN films were grown on sapphire in a home-made vertical HVPE reactor. Effect of nucleation treatments on the properties of GaN films was investigated, including the nitridation of sapphire, low temperature GaN buffer and MOCVD-template. Various material characterization techniques, including AFM, SEM, XRD, CL and PL have been used to assess these GaN epitaxial films. It was found that the surface of sapphire after high temperature nitridation was flat and showed high density nucleation centers. In addition, smooth Ga-polarity surface of epitaxial layer can be obtained on the nitridation sapphire placed in air for several days due to polarity inversion. This may be caused by the atoms re-arrangement because of oxidation. The roughness of N-polarity film was caused by the huge inverted taper domains, which can penetrate up to the surface. The low temperature GaN buffer gown at 650 degrees C is favorable for subsequent epitaxial film, which had narrow FWHM of 307 arcsec. The epitaxial growth on MOCVD-template directly came into quasi-2D growth mode due to enough nucleation centers, and high quality GaN films were acquired with the values of the FWHM of 141 arcsec for (002) reflections. After etching in boiled KOH, that the total etch-pit density was only 5 x 106 cm(-2) illustrated high quality of the thick film on template. The photoluminescence spectrum of GaN film on the MOCVD-template showed the narrowest line-width of the band edge emission in comparison with other two growth modes.
Resumo:
An effective approach to enhance the light output power of InGaN/GaN light emitting diodes (LED) was proposed using pyramidal patterned sapphire substrates (PSS). The sapphire substrates were patterned by a selective chemical wet etching technique. GaN-based LEDs were fabricated on patterned sapphire substrates through metal organic chemical deposition (MOCVD). The LEDs fabricated on patterned sapphire substrates exhibit excellent device performance compared to the conventional LEDs fabricated on planar sapphire substrates in the case of the same growth and device fabricating conditions. The light output power of the LEDs fabricated on patterned sapphire substrates was about 37% higher than that of LEDs on planar sapphire substrates at an injection current of 20 mA. The significant enhancement is attributable to the improvement of the quality of GaN-based epilayers and improvement of the light extraction efficiency by patterned sapphire substrates.