33 resultados para Antenna radiation patterns.
Resumo:
Different conical emission (CE) patterns are obtained experimentally at various incident powers and beam sizes of pump laser pulses with pulse durations of 7 fs, 44 fs and 100 fs. The results show that it is the incident power but not the incident power density that determines a certain CE pattern. In addition, the critical powers for similar CE patterns are nearly the same for the laser pulses with the same spectral bandwidth. Furthermore, as far as a certain CE pattern is concerned, the wider the spectral bandwidth of pump laser pulse is, the higher the critical power is. This will hopefully provide new insights for the generation of CE pattern in optical medium.
Resumo:
Confinement of electromagnetic energy into a single well-controlled oscillation of light is very important for generation of intense supercontinuum radiation. We find that the pulse breakup of few-cycle ultrashort laser pulses via resonant propagation effects can achieve this aim. By extracting such pulses and then focusing them to drive the He atoms, about 200 eV intense supercontinuum radiation can be generated, which is capable of supporting similar to 20 attosecond isolated pulse generation.
Resumo:
An electron with an appropriate initial velocity injected into an oncoming, ultraintense circularly polarized laser pulse can execute a circular relativistic motion at the peak of the laser pulse. The circulating electron then radiates in the same manner as that in the storage ring of a conventional synchrotron source. Owing to the extremely small orbit radius, the laser-field synchrotron radiation thus generated can be a compact source of radiation pulses at short wavelength and short duration.
Resumo:
Nonlinear Thomson backscattering of an intense Gaussian laser pulse by a counterpropagating energetic electron is investigated by numerically solving the electron equation of motion taking into account the radiative damping force. The backscattered radiation characteristics are different for linearly and circularly polarized lasers because of a difference in their ponderomotive forces acting on the electron. The radiative electron energy loss weakens the backscattered power, breaks the symmetry of the backscattered-pulse profile, and prolongs the duration of the backscattered radiation. With the circularly polarized laser, an adjustable double-peaked backscattered pulse can be obtained. Such a profile has potential applications as a subfemtosecond x-ray pump and probe with adjustable time delay and power ratio. (c) 2006 American Institute of Physics.
Resumo:
The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled.
Resumo:
The gain of a transmitter for intersatellite communications is closely related to the performance of all the links. We calculate the transmitter telescope's gain with the help of the rigorous scalar diffraction theory and equivalent optical layout method. Furthermore, a comparison is performed with the conventional imaging method. The results show that the stop inside the telescope can affect the gain of the telescope. Finally, the gain is calculated under the condition of the aberrations. We find that different aberrations cause different effects. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The gain of a transmitter for intersatellite communications is closely related to the performance of all the links. We calculate the transmitter telescope's gain with the help of the rigorous scalar diffraction theory and equivalent optical layout method. Furthermore, a comparison is performed with the conventional imaging method. The results show that the stop inside the telescope can affect the gain of the telescope. Finally, the gain is calculated under the condition of the aberrations. We find that different aberrations cause different effects. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Based on the generalized Huygens-Fresnel diffraction integral theory and the stationary-phase method, we analyze the influence on diffraction-free beam patterns of an elliptical manufacture error in an axicon. The numerical simulation is compared with the beam patterns photographed by using a CCD camera. Theoretical simulation and experimental results indicate that the intensity of the central spot decreases with increasing elliptical manufacture defect and propagation distance. Meanwhile, the bright rings around the central spot are gradually split into four or more symmetrical bright spots. The experimental results fit the theoretical simulation very well. (C) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
An atomic force microscope (AFM) assisted surface plasmons leakage radiation photolithography technique has been numerically demonstrated by using two-dimensional finite-difference time-domain (2D-FDTD) method. With the aid of a metallic AFM tip, particular characteristic of the Kretstchmann configuration to excite surface plasmons (SPs) is utilized to achieve large-area patterns with high spatial resolution and contrast, the photoresist could be exposed with low power laser due to the remarkable local field enhancement at the metal/dielectric interface and the resonant localized SPs modes near the tip. Good tolerance on the film thickness and incident angle has been obtained, which provides a good practicability for experiments. This photolithography technique proposed here can realize large-area, high-resolution, high-contrast, nondestructive, arbitrary-structure fabrication of nanoscale devices. (c) 2007 Elsevier B.V. All rights reserved.