520 resultados para Alumina Catalyst


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optically transparent alumina ceramics were fabricated by conventional process and sintered without pressure in H-2 atmosphere. The results indicate that relative densities of alumina specimens increase to theoretical densities (T. D.) with increasing content of La2O3. With increasing holding time during sintering, much less pores and larger grains were found in the sintered alumina samples. Higher transmittance was achieved in alumina codoped with MgO and La2O3 as compared with that doped with MgO only. The total-transmittance of alumina sample is up to 86% at a wavelength range of 300 - 800 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of alumina and chromium interlayers on the microstructure and optical properties of thin Ag films are investigated by using spectrophotometry, x-ray diffraction and AFM. The characteristics of Ag films in Ag/glass, Ag/Al2O3/glass and Ag/Cr/glass stacks are analysed. The results indicate that the insertion of an Al2O3 or Cr layer decreases the grains and influences the reflectance of Ag films. The reflectance of the Ag film can be increased by controlling the thickness of alumina interlayer. The stability of Ag films is improved and the adhesion of Ag films on glass substrates is enhanced by alumina as an interlayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured the wear resistances of alumina, alumina/silicon carbide composite and alumina/mullite composite by abrasive wear. And we studied the influence of fracture mode and worn surface pullout on wear resistance. The results are as follows: the main wear mechanisms of alumina and alumina/silicon carbide were fracture wear and plastic wear respectively, and for alumina/mullite composite, fracture wear and plastic wear mechanisms worked together. The wear resistance of the alumina/silicon carbide composite and the alumina/mullite composite was better by a factor of 1 similar to 3 than that of the monolithic alumina. There were two main reasons for the better wear resistance, i.e., the improved mechanical properties and the more smooth worn surfaces. However, The primary reason was the reduction of area fraction of pullout on the worn surfaces induced by fracture mode transition. (C) 2007 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alumina and alumina/mullite composites with mullite content of 0.96-8.72 vol.% were subjected to an abrasive wear test under loads of 0.1-2.0 N with a ball-on-disc apparatus. The wear rate and area fraction of pullout f(po) on the worn surfaces were measured. The wear resistances of the alumina/mullite composites were better by a factor of 1-2 than that of pure alumina. The main wear mechanism of alumina is fracture wear, and for alumina/mullite composites, fracture wear and plastic wear mechanisms work together. The influence of mechanical properties on wear resistance was estimated by Evans' method. It was found that the wear rate depends on f(po), and the primary reason for the better wear resistance of alumina/mullite composites is the reduction off, induced by fracture mode transition. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A free-standing, bidirectionally permeable and ultra-thin (500-1000 nm) porous anodic alumina membrane was fabricated using a two-step aluminium anodization process, which was then placed on top of a silicon film as an etching mask. The pattern was transferred to silicon using dry-etching technology, and the silicon nanopore array structure was formed. The factors which afflct the pattern transfer process are discussed. Observation of the nanopatterned sample under a scanning electron microscope shows that the structure obtained by this method is made up of uniform and highly ordered holes, which attains to 125 nm depth. The photoluminescence spectrum from the nanopatterned sample,the surface of which has been thermal-oxidized, shows that the the luminesce is evidently enhanced, the mechanism of which is based on the normally weak TO phonon assisted bandgap light-emission process, and the physical reasons that underlic the enhancement have been analyzed. The PL results do show an attractive optical characteristic, which provides a promising pathway to achieve efficient light emission from silicon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280 degrees C). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work demonstrates the condition optimization during liquid phase deposition (LPD) Of SiO2/GaAs films. LPD method is further applied to form Al2O3 films on semiconductors with poison-free materials. Proceeding at room temperature with inexpensive equipment, LPD of silica and alumina films is potentially serviceable in microelectronics and related spheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional ZnO nanowall networks were grown on ZnO-coated silicon by thermal evaporation at low temperature without catalysts or additives. All of the results from scanning electronic spectroscope, X-ray diffraction and Raman scattering confirmed that the ZnO nanowalls were vertically aligned and c-axis oriented. The room-temperature photoluminescence spectra showed a dominated UV peak at 378 nm, and a much suppressed orange emission centered at similar to 590 nm. This demonstrates fairly good crystal quality and optical properties of the product. A possible three-step, zinc vapor-controlled process was proposed to explain the growth of well-aligned ZnO nanowall networks. The pre-coated ZnO template layer plays a key role during the synthesis process, which guides the growth direction of the synthesized products. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cr3+-doped NH4Al(OH)(2)CO3 nanotubes, templated by surfactant assemblies, were successfully synthesized via the homogenization precipitation method, and various crystallographic phase Al2O3:Cr3+ nanotubes were also obtained by postannealing at different temperatures. The characteristic R-1, R-2 doublet line transitions of ruby can be observed in the high crystalline alpha-Al2O3 nanotubes calcined at temperatures higher than 1200 degrees C. The results also indicate that the formation mechanism of the tubular nanostructures should result from the self-rolling action of layered compound NH4Al(OH)(2)CO3 under the assistance of the surfactant soft-template. The convenient synthetic procedure, excellent reproducibility, clean reactions, high yield, and fine quality of products in this work make the present route attractive and significant. Aluminum oxide nanotubes with high specific surface area could be used as fabricating nanosized optical devices doped with different elements and stable catalyst supports of metal clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.