125 resultados para Airflow resistivity
Resumo:
Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resistivity silicon (HRS) substrate. The results show that the microwave loss of a CPW on LRS is too high to be used, but it can be greatly reduced by adding a thick interlayer of silicon oxide between the CPW transmission lines and the LRS.A CPW directly on HRS shows a loss lower than 2dB/cm in the range of 0-26GHz and the process is simple,so HRS is a more suitable CPW substrate.
Resumo:
Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.
Resumo:
Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, "turbulent spots" appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed neat sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces.
Resumo:
本文研究了滑动弧放电过程中电参数的变化,并对滑动弧等离子体中的非平衡度和各参数之间关系进行了讨论。应用了双通道电弧模型 ,对电弧在气流作用下的运动规律进行了数值模拟。模拟的结果有助于分析滑动弧非平衡等离子体的产生机理。 The elelctric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharge.Using two-channel model, the rules of arc moving due to effect of the airflow is simulated.The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma.
Resumo:
A series of experiments were conducted to characterize the self-ignition and combustion of thermally cracked kerosene in both a Mach 2.5 model combustor with a combustor entrance height of 51 mm and a Mach 3.0 model combustor with an entrance height of 70 mm. A unique kerosene heating and delivery system was developed, which can prepare heated kerosene up to 950 K at a pressure of 5.5 MPa with negligible fuel coking. The extent of China no. 3 kerosene conversion under supercritical conditions was measured using a specially designed system. The compositions of gaseous products as a result of thermal cracking were analyzed using gas chromatography. The mass flow rates of cracked kerosene were also calibrated and measured using sonic nozzles. With the injection of thermally cracked kerosene, the ability to achieve enhanced combustion performance was demonstrated under a variety of airflow and fuel conditions. Furthermore, self-ignition tests of cracked kerosene in a Mach 2.5 model combustor over a range of fuel injection conditions and with the help of different amounts of pilot hydrogen were conducted and discussed.
Resumo:
ZnO piezoelectric thin films were prepared on crystal substrate Si(111) by sol-gel technology, then characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy (AFM). The ZnO films characterized by X-ray diffraction are highly oriented in (002) direction with the growing of the film thickness. The morphologies, roughness and grain size of ZnO film investigated by AFM show that roughness and grain size of ZnO piezoelectric films decrease with the increase of the film thickness. The roughness dimension is 2.188-0.914 nm. The piezoelectric coefficient d(33) was investigated with a piezo-response force microscope (PFM). The results show that the piezoelectric coefficient increases with the increase of thickness and (002) orientation. When the force reference is close to surface roughness of the films, the piezoelectric coefficient measured is inaccurate and fluctuates in a large range, but when the force reference is big, the piezoelectric coefficient d(33) changes little and ultimately keeps constant at a low frequency.
Resumo:
In this paper, the analytical model coupling the convective boundary layer (CBL) with the free atmosphere developed by Qi and Fu (1992) is improved. And by this improved model, the interaction between airflow over a mountain and the CBL is further discussed. The conclusions demonstrate: (1) The perturbation potential temperatures in the free atmosphere can counteract the effect of orographic thermal forcing through entraining and mixing in the CBL. If u(M)BAR > u(F)BAR, the feedback of the perturbation potential temperatures in the free atmosphere is more important than orographic thermal forcing, which promotes the effect of interfacial waves. If u(M)BAR < u(F)BAR, orographic thermal forcing is more important, which makes the interfacial height and the topographic height identical in phase, and the horizontal speeds are a maximum at the top of the mountain. (2) The internal gravity waves propagating vertically in the free atmosphere cause a strong downslope wind to become established above the lee slope in the CBL and result in the hydraulic jump at the top of the CBL. (3) With the CBL deepening, the interfacial gravity waves induced by the potential temperature jump at the top of the CBL cause the airflow in the CBL to be subcritical.
Resumo:
考虑激光与运动目标相互作用的基础上。利用有限元方法分析了亚声速条件下运动目标在激光辐照全过程的温度场和热应力场的分布与演化规律。结果表明:高速流场的存在,导致了明显的冷却效应;加热过程中目标材料出现了屈服,导致激光熄灭后结构内出现残余应力和变形;激光辐照区边缘产生很高的温度梯度和应力梯度,并且由于气流影响,受辐照区域前后两端应力分布不对称。
Resumo:
ZnO piezoelectric thin films were prepared on crystal substrate Si(111) by sol-gel technology, then characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy (AFM). The ZnO films characterized by X-ray diffraction are highly oriented in (002) direction with the growing of the film thickness. The morphologies, roughness and grain size of ZnO film investigated by AFM show that roughness and grain size of ZnO piezoelectric films decrease with the increase of the film thickness. The roughness dimension is 2.188-0.914 nm. The piezoelectric coefficient d(33) was investigated with a piezo-response force microscope (PFM). The results show that the piezoelectric coefficient increases with the increase of thickness and (002) orientation. When the force reference is close to surface roughness of the films, the piezoelectric coefficient measured is inaccurate and fluctuates in a large range, but when the force reference is big, the piezoelectric coefficient d(33) changes little and ultimately keeps constant at a low frequency.
Resumo:
We present our experimental results supporting optical-electrical hybrid data storage by optical recording and electrical reading using Ge2Sb2Te5as recording medium. The sheet resistance of laser- irradiated Ge2Sb2Te5. lms exhibits an abrupt change of four orders of magnitude ( from 10 7 to 10 3./ sq) with increasing laser power, current- voltage curves of the amorphous area and the laser- crystallized dots, measured by a conductive atomic force microscope ( C- AFM), show that their resistivities are 2.725 and 3.375 x 10- 3., respectively, the surface current distribution in the. lms also shows high and low resistance states. All these results suggest that the laser- recorded bit can be read electrically by measuring the change of electrical resistivity, thus making optical electrical hybrid data storage possible.
Resumo:
ZnO thin films were grown on single-crystal gamma-LiAlO2 (LAO) and sapphire (0001) substrate by pulsed laser deposition (PLD). The structural, optical and electrical properties of ZnO films were investigated. The results show that LAO is more suitable for fabricating ZnO films than sapphire substrate and the highest-quality ZnO film was attained on LAO at the substrate temperature of 550 degrees C. However, when the substrate temperature rises to 700 degrees C, lithium would diffuse from the substrate (LAO) into ZnO film which makes ZnO film on LAO becomes polycrystalline without preferred orientation, the stress in ZnO film increases dominantly and the resistivity of the film decreases exponentially. (c) 2005 Elsevier B.V. All rights reserved.