60 resultados para 757
Resumo:
植物耐受和积累重金属的细胞学基础是植物细胞内存在一些能够络合和区隔化金属离子的机制。细胞中络合重金属离子最重要的小肽分子是谷胱甘肽(GSH)和植物络合素(PCs),而YCFⅠ基因编码的ABC-type 液泡膜转运蛋白负责将重金属离子及其与上述小肽形成的复合物转运进入细胞液泡中,即将重金属离子区隔化。植物细胞中合成GSH 和PCs 的关键酶分别是γ-谷氨酰氨半胱氨酸合成酶(GSHⅠ)和植物络合素合酶(PCS),他们的编码基因分别为GSHⅠ 和PCS 。此外定位于细胞质中的小囊泡上且对二价阳离子的吸收和转运有重要作用的SMF2 蛋白可能也参与重金属离子的区隔化过程。 为了改良植物使之能够应用于清除土壤中的重金属污染,本研究基于植物耐受和积累重金属的细胞学机制,分别将酿酒酵母来源的GSHⅠ、YCFⅠ和SMF2 基因,以及GSHⅠ、YCFⅠ基因分别与镉抗性植物大蒜来源的AsPCSⅠ 基因构建为不同的基因组合表达载体,转化模式植物拟南芥。对不同组合转基因拟南芥的功能分析表明: 1、酵母来源的基因GHSⅠ、YCFⅠ分别在拟南芥中异源超表达可以在一定程度上提高转基因拟南芥耐受、积累重金属的能力;其中GSHⅠ基因在拟南芥超表达可以提高转基因拟南芥合成GSH 的能力,转基因拟南芥细胞中GSH 浓度比野生型增加。 2、将GSHⅠ基因和来自大蒜的AsPCSⅠ基因同时在拟南芥中超表达能够显著提高转基因拟南芥耐受和积累重金属的能力,且积累和耐受能力显著高于分别转GSHⅠ或AsPCSⅠ的单价转基因株系;将YCFⅠ基因和AsPCSⅠ基因同时在拟南芥中超表达也能够显著提高转基因拟南芥耐受和积累重金属的能力,且积累和耐受能力显著高于分别转YCFⅠ或AsPCSⅠ的单价转基因株系。两种双价转基因株系GSHⅠ+AsPCSⅠ和YCFⅠ+AsPCSⅠ在积累和耐受不同重金属胁迫方面没有明显差别。 3、将SMF2 基因在拟南芥中异源表达,研究了植物中囊泡转运是否参与了重金属离子的吸收和区隔化过程。研究结果表明:超表达SMF2 基因的拟南芥尽管耐受重金属胁迫的能力与野生型没有明显差异,但其积累重金属的能力显著提高。这为证明植物中小囊泡转运参与重金属转运提供了间接证据。 综上所述,同时将多个参与植物对重金属络合、转运和区隔化作用的关键基因在转基因植物中表达可以提高植物耐受和积累重金属的能力,是培育可用于植物修复的新型工程植物的值得探索的途径。本论文所设计和构建的双价基因组合及其对目标植物的转化,在环境重金属污染的清除中有潜在的应用价值。
Resumo:
下载PDF阅读器在采食脊椎动物血液能力的进化过程中,吸血节肢动物的唾液腺形成了丰富的抗止血因子,如血小板聚集抑制因子,他们通过不同机制抑制ADP、凝血酶和胶原等诱导的血小板聚集.抗凝因子能扰乱内源性和外源性止血通路.血管扩张因子包括储藏、运输一氧化氮的nitrophorins,模拟内源性血管扩张的多肽和催化或水解内源性血管收缩因子的酶.吸血节肢动物的唾液腺蛋白可以通过直接作用或协同作用起到抗止血的效果.复杂多样的唾液腺生物活性分子解释了吸血节肢动物成功获得血餐的分子机制,也提供了新的抗止血药物分子.
Resumo:
The ability to feed on vertebrate blood has evolved many times in various arthropod clades. Consequently, saliva of blood-feeding arthropods has proven to be a rich source of antihemostatic molecules. A variety of platelet aggregation inhibitors antagonize platelet responses to wound-generated signals, including ADP, thrombin, and collagen. Anticoagulants disrupt elements of both the intrinsic and extrinsic pathways. Vasodilators include nitrophorins (nitric oxide storage and transport heme proteins), a variety of peptides that mimic endogenous vasodilatory neuropeptides, and proteins that catabolize or sequester endogenous vasoconstrictors. Multiple salivary proteins may be directed against each component of hemostasis, resulting in both redundancy and in some cases cooperative interactions between antihemostatic proteins. The complexity and redundancy of saliva ensures an efficient blood meal for the arthropod, but it also provides a diverse array of novel antihemostatic molecules for the pharmacologist.
Resumo:
Behavioural stress facilitates long-term depression in Schaffer collaterals-CAI pathway, but it is unknown whether it influences long-term depression in temporoammonic fibres-CAI. Here, we report that low-frequency stimulation induced long-term depression
Resumo:
本文介绍并评述了蓝藻水华中最常见的毒素——微囊藻毒素的产生途径和环境归趋的国内外研究进展.主要内容包括:微囊藻毒素的来源、结构和一般特性;微囊藻毒素的分子合成机制、分布、产生规律及其功能;以及微囊藻毒素的环境归趋.重点介绍了在毒素环境归趋研究方面的重要突破,指出了该领域研究中存在的问题和今后研究的重点方向.
Resumo:
采用复合垂直流人工湿地(IVCW)系统,研究了系统内部水流方向上各态氮和其它理化参数的变化。结果表明,复合垂直流人工湿地中,硝态氮、亚硝态氮、溶解氧和pH沿水流方向逐渐减小;总氮去除率为43.63%,可使劣Ⅴ类水的总氮指标降至Ⅲ类;氮的去除主要发生在下行池,上行池因溶解氧低、有机碳不足和系统向水中释放氮的原因,脱氮效果不明显。
Resumo:
A liquid chromatography electrospray mass spectrometry (LC/ESI/MS) method working in multiple reactions monitoring mode for the determination of trace amounts of microcystin variants (MC-LR and [Dha(7)] MC-LR) in waters was developed. The limit of quantification was 0.05 mu g/L and the limit of detection was 0.015 mu g/L for MC-LR and [Dha(7)] MC-LR, respectively. Recoveries for MCs were in the range of 68%-81%. MC-LR and [Dha(7)] MC-LR were chemically stable with similar physiochemical behavior.
Resumo:
The Xiangxi River is the first middling tributary of the Changjiang River near the Three Gorges Dam. The River is subject to phosphorus pollution mainly from industrial wastewater. As the water quality of the Xiangxi River could directly influence the water quality of the Three Gorges Reservoir, the research on phosphorus levels and its change in the sediment profile of the Xiangxi River could provide useful information in the dynamic changes in the system, thereby offering options for mitigative measures. Water and sediment samples from lower reaches of Xiangxi River were collected and the different forms of phosphorus in sediments of the Xiangxi River were studied. The concentrations of total phosphorus in sediment ranged from 757.67 to 1438.54 mg/kg. Inorganic phosphorus concentrations ranged from 684.63 to 1055.58 mg/kg. Phosphorus contamination was serious in some parts of the Xiangxi River. With an average concentration of 635.17 mg/kg, calcium-bound phosphorus is the main form among different inorganic phosphorus forms. Labile phosphorus and iron/aluminum-bound phosphorus measured 3.40, 0.05and 35.28 mg/kg, respectively. The mobilization potential of phosphorus of sediments was studied through adsorption and release experiments. The equilibrium concentration of phosphorus adsorption and release was around 0.1 mg/L. The initial concentrations of phosphorus in the overlying water and the sediments have obvious effect on phosphorus mobilization potential. In addition, the release rate of phosphorus in sediment increased with water depth.
Resumo:
This paper describes the long-term dynamics of phosphorus concentrations in both the lake water and the sediment in a subtropical Chinese lake, Lake Donghu. The total phosphorus (TP) concentration in the lake water experienced an upward trend from the 1950s, and peaked in 1983/1984, but declined obviously afterwards. From the 1950s to the 1990s, TP content in the upper 10 cm sediment of the lake increased steadily from 0.307 to 1.68 mg Pg DW-1 at Station I and from 0.151 to 0.89 mg Pg DW-1 at Station II, respectively. The TP increase in the lake water before mid-1980s was mainly attributed to the massive input of sewage P. The outbreak of cyanobacterial blooms coincided with the peaks of TP and Orthophosphate (PO4-P) in the water in mid-1980s, and the maximum TP of the water reached as high as 1.349 mg/1 at Station I and 0.757 mg/l at Station II (in 1984), respectively. The declines of TP and PO4-P in the water after mid-1980s was coincident with the disappearance of cyanobacterial bloom. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We demonstrate a sub-nanosecond electro-optical switch with low crosstalk in a silicon-on-insulator (SOI) dual-coupled micro-ring embedded with p-i-n diodes. A crosstalk of -23 dB is obtained in the 20-mu m-radius micro-ring with the well-designing asymmetric dual-coupling structure. By optimizations of the doping profiles and the fabrication processes, the sub-nanosecond switch-on/off time of < 400 ps is finally realized under an electrical pre-emphasized driving signal. This compact and fast-response micro-ring switch, which can be fabricated by complementary metal oxide semiconductor (CMOS) compatible technologies, have enormous potential in optical interconnects of multicore networks-on-chip.
Resumo:
In this study, the deformation mechanisms of nonpolar GaN thick films grown on m-sapphire by hydride vapor phase epitaxy (HVPE) are investigated using nanoindentation with a Berkovich indenter, cathodoluminescence (CL), and Raman microscopy. Results show that nonpolar GaN is more susceptible to plastic deformation and has lower hardness than c-plane GaN. After indentation, lateral cracks emerge on the nonpolar GaN surface and preferentially propagate parallel to the < 11 (2) over bar0 > orientation due to anisotropic defect-related stresses. Moreover, the quenching of CL luminescence can be observed to extend exclusively out from the center of the indentations along the < 11 (2) over bar0 > orientation, a trend which is consistent with the evolution of cracks. The recrystallization process happens in the indented regions for the load of 500 mN. Raman area mapping indicates that the distribution of strain field coincides well with the profile of defect-expanded dark regions, while the enhanced compressive stress mainly concentrates in the facets of the indentation.