651 resultados para 247
Three-photon-excited upconversion luminescence of Ce3+: YAP crystal by femtosecond laser irradiation
Resumo:
Infrared to ultraviolet and visible upconversion luminescence was demonstrated in trivalent cerium doped YAlO3 crystal (Ce3+: YAP) under focused infrared femtosecond laser irradiation. The fluorescence spectra show that the upconverted luminescence comes from the 5d-4f transitions of trivalent cerium ions. The dependence of luminescence intensity of trivalent cerium on infrared pumping power reveals that the conversion of infrared radiation is dominated by three-photon excitation process. It is suggested that the simultaneous absorption of three infrared photons pumps the Ce3+ ion into upper 5d level, which quickly nonradiatively relax to lowest 5d level. Thereafter, the ions radiatively return to the ground states, leading to the characteristic emission of Ce3+. (c) 2005 Optical Society of America.
Resumo:
采用矢量合成法设计了LiB3O5(LBO)晶体上1064nm,532nm二倍频增透膜,在1064nm处的反射率为0.0014%,532nm处的反射率为0.0004%。根据误差分析,薄膜制备时沉积速率精度控制在+6.5%时,1064nm处的反射率增加至0.22%,532nm处增加至0.87%。材料折射率的变化控制在+3%时,1064nm处的反射率达0.24%,532nm处达0.22%。沉积速率和折射率控制的负变化不增大特定波长处的剩余反射率。与膜层折射率相比,薄膜物理厚度对剩余反射率的影响小。低折射率膜层的
Extended effective medium model for refractive indices of thin films with oblique columnar structure
Resumo:
The refractive indices of thin films, containing dielectric and voids in an oblique columnar structure, are modeled by extended effective medium in the quasi-static limit. The dielectric function is shown to be strongly dependent on the angle of incidence and on the columnar orientation for p-polarized light. This model is applied to model ZrO2 thin films with oblique columnar structures and the computed results, with the Maxwell Garnett, the Bragg-Pippard, and the Bruggeman formalisms, have been given. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel design for dielectric anisotropic mirrors with birefringent thin films for normal incidence is presented. This mirror consists of a stack of quarter-wave biaxial layers. The biaxial anisotropic layers can be fabricated by oblique deposition. The reflectance is different for two linear polarizations of light incidence on the mirrors. As a numerical example, the design is carried out on glass with TiO2 and ZrO2. These thin films could be applied to anisotropic reflective devices for lasers.