265 resultados para 190.5890
Resumo:
利用非平稳信号的时频分析方法研究了一类非线性系统的频率特性和阻尼特性随运动形态的变化规律 ,得到了能简洁、直观地反映系统基本非线性动力学特性的广义骨架线性系统 (简称GSLS)和骨架曲线· 在此基础上 ,利用时频滤波方法根据系统非平稳响应信号对非线性系统进行辨识· 该项工作为非线性系统反问题的研究提供了一条新的途径·
Resumo:
以热镀锌板单向拉伸试验为基础,运用化学退镀以及随后的基体表面粗糙度测量和横截面标记观测等试验手段,比较了塑性变形前后基体表面及界面的形貌,得出,塑性变形过程中,基体表面作为界面的一部分会产生粗糙化现象,但这种粗糙化会受到镀锌层的抑制,因此界面并不会出现明显的形貌变化,然而这种基体表面粗糙化所产生的应力,可能导致界面失效。
Resumo:
利用MEMS技术制作了不同尺寸的镍(Ni)膜微桥结构样品.采用纳米压痕仪XP系统测量了微桥载荷与位移的关系,并结合微桥力学理论模型得到了两种不同尺寸的Ni膜的弹性模量和残余应力.结果表明,两种不同尺寸的Ni膜的弹性模量结果一致,为190 GPa左右,但是残余应力变化较大.与采用纳米压痕仪直接测得的带有硅(Si)基底的Ni膜弹性模量186.8±7.5 GPa相比较,两者符合较好.
Resumo:
采用MEMS(MicroelectromechanicalSystems)技术研制了镍(Ni)膜微桥结构试样,应用陶瓷压条为承力单元,与纳米压痕仪XP系统的Berkovich三棱锥压头相结合,解决了较宽Ni膜微桥加载问题。测量了微桥载荷与位移的关系,并结合微桥力学理论模型得到了Ni膜微桥的杨氏模量及残余应力,其值分别为190.5GPa和146MPa,与应用纳米压痕仪直接测得的带有Si基底的Ni膜杨氏模量186.8±7.34GPa相吻合。
Resumo:
本书阐明了板壳断裂理论的基础。论证了Reissner型板壳断裂理论的科学性、经典板壳断裂理论的缺陷及在一定范围内仍具有的实用价值;介绍了作者所创意的研究Reissner型板壳断裂纹尖端场的方法等。
目录
- §1.1 板壳弯曲断裂问题
- §1.2 Kirchhoff经典板壳弯曲断裂理论
- §1.3 Reissner型板壳弯曲断裂理论
- §1.4 Kirchhoff与Reissner型板壳弯曲断裂理论的比较
- §1.5 含裂纹有限尺寸板壳断裂分析的局部-整体法
- §1.6 含表面裂纹板壳
- §2.1 Kirchhoff板的基本概念和基本假定
- §2.2 基本公式与弹性曲面微分方程
- §2.3 边界条件
- §2.4 弹性薄板的应变能
- §2.5 极坐标下的挠曲面微分方程与内力公式
- §2.6 裂纹尖端场特征展开式通项公式
- §2.7 Kirchhoff板弯曲应力强度因子
- §3.1 基本方程和公式的复变函数表示
- §3.2 所引入函数的确定程度与一般形式
- §3.3 坐标变换与边界条件
- §3.4 运用保角变换方法求解孔口问题
- §3.5 应力强度因子与函数Φ(z)的关系
- §3.6 复变-主部分析法之应用简例
- §3.7 共直线裂纹问题的一般解答
- §3.8 典型弯曲裂纹问题的解答及弯曲应力强度因子公式
- §3.9 共圆曲线裂纹问题的解答及弯曲应力强度因子公式
- §4.1 裂纹尖端奇异元的位移模式与弯曲应力强度因子
- §4.2 裂纹尖端奇异元的刚度矩阵
- §4.3 裂纹尖端奇异元与常规单元的连接
- §4.4 解析法与数值法的结果比较与讨论
- §4.5 两共线半无限裂纹问题的定解条件及解的实用价值
- §5.1 Reissner型板的基本假定
- §5.2 Reissner型板的基本公式与平衡微分方程
- §5.3 基本方程的简化
- §5.4 边界条件
- §5.5 极坐标下的基本公式与平衡微分方程
- §5.6 两种平板理论用于无裂纹板时的比较
- §5.7 两种乎板理论用于含裂纹板时的比较
- §6.1 基本方程和一般求解方法
- §9.1 局部-整体法与其它解析和数值法的结果比较
- §9.2 边界对应力强度因子的影响
- §9.3 板的支承条件及长宽比的影响
- §9.5 计算Reissner型板应力强度因子的一组近似方程与近似解法
- §9.4 Reissner型板理论与Kirchhoff板理论所得应力强度因子的比较
- §9.6 关于数值计算的几点讨论
Resumo:
The influence of atomic densities on the propagation property for ultrashort pulses in a two-level atom (TLA) medium is investigated. With higher atomic densities, the self-induced transparency (SIT) cannot be recovered even for 2π ultrashort pulses. New features such as pulse splitting, red-shift and blue-shift of the corresponding spectra arise, and the component of central frequency gradually disappears.
Resumo:
We investigate the spectra of a femtosecond pulse train propagating in a resonant two-level atom (TLA) medium. it is found that higher spectral components can be produced even for a 2 pi femtosecond pulse train. Furthermore, the spectral effects depend crucially on both the relative shift phi and the delay time tau between the successive pulses of the femtosecond pulse train.
Resumo:
We demonstrated optical amplification at 1550 nm with a carbon tetrachloride solution of Er3+-Yb3+ codoped NaYF4 nanocubes synthesized with solvo-thermal route. Upon excitation with a 980 nm laser diode, the nanocube solution exhibited strong near-infrared emission by the I-4(13/2) -> I-4(15/2) transition of Er3+ ions due to energy transfer from Yb3+ ions. We obtained the highest optical gain coefficient at 1550 nm of 0.58 cm(-1) for the solution with the pumping power of 200 mW. This colloidal solution might be a promising candidate as a liquid medium for optical amplifier and laser at the optical communication wavelength. (C) 2009 Optical Society of America
Resumo:
We experimentally investigate the generation of high-order harmonics in a 4-mm-long gas cell using midinfrared femtosecond pulses at various wavelengths of 1240 nm, 1500 nm, and 1800 nm. It is observed that the yield and cutoff energy of the generated high-order harmonics critically depend on focal position, gas pressure, and size of the input beam which can be controlled by an aperture placed in front of the focal lens. By optimizing the experimental parameters, we achieve a cutoff energy at similar to 190 eV with the 1500 nm driving pulses, which is the highest for the three wavelengths chosen in our experiment.
Resumo:
Optical parametric chirped pulse amplification with different pump wavelengths was investigated using LBO crystal, at signal central wavelength of 800 nm. According to our theoretical simulation, when pump wavelength is 492.5 nm, there is a maximal gain bandwidth of 190 nm. centered at 805 nm in optimal noncollinear angle using LBO. Presently, pump wavelength of 492.5 nm can be obtained from second harmonic generation of a Yb:Sr-5(PO4)(3)F laser. The broad gain bandwidth can completely support similar to 6 fs with a spectral centre of seed pulse at 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning crystal angle for phase matching. The gain spectrum with pump wavelength of 492.5 nm is much better than those with pump wavelengths of 400, 526.5 and 532 nm, at signal centre of 800 nm. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The gain properties of near-collinear degenerated phase-matched optical parametric amplification (OPA) using PPKTP crystal are investigated theoretically. The results indicate that the type-0 phase matching of PPKTP has larger accepted angle and better gain spectrum by tuning crystal temperature or rotating crystal angle.
Resumo:
Conical emission is investigated for Ti:sapphire femtosecond laser pulses propagating in water. The colored rings can be observed in the forward direction due to the constructive and destructive interference of transverse wavevector, which are induced by the spatio-temporal gradient of the free-electron density. With increasing input laser energy, due to filamentation and pulse splitting induced by the plasma created by multiphoton excitation of electrons from the valence band to the conduction band, the on-axis spectrum of the conical emission is widely broadened and strongly modulated with respect to input laser spectrum, and finally remains fairly constant at higher laser energy due to intensity clamping in the filaments.
Resumo:
The application of a Michelson interferometer with a self-pumped phase-conjugate mirror to measure small vibration amplitudes of a rough surface is described. The distorted wave front of the light that is diffusely reflected from the rough surface is restored by phase conjugation to provide an interference signal with a high signal-to-noise ratio. The vibration amplitudes of a stainless-steel sample are measured with a precision of similar to 5 nm. (C) 2000 Optical Society of America OCIS codes: 120.3180, 190.5040, 120.7280.
Resumo:
The photorefractive holographic dynamics of grating formation in photochromic doubly doped LiNbO3:Fe:Mn crystal is studied numerically and analytically in terms of the two-center model of Kukhtarev Et al. [Ferroelectrics 22, 949 (1979)]. The relations among the recorded and fixed space-charge fields and the doping densities, the oxidation-reduction states of the fields, and the intensities of UV-sensitizing and red recording beams are studied. Important conditions and effects are feued, and an optimal prescription for material doping and oxidation-reduction processing is suggested in which the crystal can be strongly oxidized and the Mn-doping density is smaller than the Fe-doping density. (C) 2000 Optical Society of America. OCIS codes: 050.7330, 190.5330, 090.2900.
Resumo:
We report experimental and theoretical studies of nonvolatile photorefractive holographic recording in LiNbO3:Cu:Ce crystals with two illumination schemes: (1) UV light for sensitization and a red interfering pattern for recording and (2) blue light for sensitization and a red pattern for recording. The results show that the oxidized LiNbO3:Cu:Ce crystals can provide high, persistent refractive-index modulation with weak lightinduced scattering. The optimal working conditions and the prescription for doping and oxidation-reduction processing that yields the maximum refractive-index modulation are discussed. (C) 2000 Optical Society of America OCIS codes: 050.7330, 190.5330, 090.2900.