27 resultados para 10 Technology
Resumo:
We demonstrate 10 Gb/s directly-modulated 1.3 mu m InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-waveguide lasers with a ridge width of 4 mu m and a cavity length of 600 mu m are fabricated with standard lithography and wet etching techniques. It is found that the lasers emit at 1293 nm with a very low threshold current of 5 mA at room temperature. Furthermore, clear eye-opening patterns under 10 Gb/s modulation rate at temperatures of up to 50 degrees C are achieved by the QD lasers. The results presented here have important implications for realizing low-cost, low-power-consumption, and high-speed light sources for next-generation communication systems.
Resumo:
A new technique is reported for the rapid determination of interstitial oxygen in heavily Sb-doped silicon. This technique includes wafer thinning and low-temperature 10 K infrared measurement on highly thinned wafers. The fine structure of the interstitial oxygen absorption band around 1136 cm(-1) is obtained. Our results show that this method efficiently reduces free-carrier absorption interference, allowing a high reliability of measurement, and can be used at resistivities down to 1 x 10(-2) Omega cm for heavily Sb-doped silicon.
Resumo:
A fully-differential switched-capacitor sample-and-hold (S/H) circuit used in a 10-bit 50-MS/s pipeline analog-to-digital converter (ADC) was designed and fabricated using a 0.35-μm CMOS process. Capacitor fliparound architecture was used in the S/H circuit to lower the power consumption. In addition, a gain-boosted operational transconductance amplifier (OTA) was designed with a DC gain of 94 dB and a unit gain bandwidth of 460 MHz at a phase margin of 63 degree, which matches the S/H circuit. A novel double-side bootstrapped switch was used, improving the precision of the whole circuit. The measured results have shown that the S/H circuit reaches a spurious free dynamic range (SFDR) of 67 dB and a signal-to-noise ratio (SNR) of 62.1 dB for a 2.5 MHz input signal with 50 MS/s sampling rate. The 0.12 mm~2 S/H circuit operates from a 3.3 V supply and consumes 13.6 mW.
Resumo:
This paper proposes a novel loadless 4T SRAM cell composed of nMOS transistors. The SRAM cell is based on 32nm silicon-on-insulator (SO1) technology node. It consists of two access transistors and two pull-down transistors. The pull-down transistors have larger channel length than the access transistors. Due to the significant short channel effect of small-size MOS transistors, the access transistors have much larger leakage current than the pull-down transistors,enabling the SRAM cell to maintain logic "1" while in standby. The storage node voltages of the cell are fed back to the back-gates of the access transistors,enabling the stable "read" operation of the cell. The use of back-gate feedback also helps to im- prove the static noise margin (SNM) of the cell. The proposed SRAM cell has smaller area than conventional bulk 6T SRAM cells and 4T SRAM cells. The speed and power dissipation of the SRAM cell are simulated and discussed. The SRAM cell can operate with a 0. 5V supply voltage.
Resumo:
In this paper, we report a novel 1.3-μm uncooled AlGaInAs/InP multiple quantum well (MQW) ridge waveguide laser diodes. By optimizing the design of MQW structure and facet coatings, together with the application of reversed-mesa ridge waveguide (RM-RWG) structure, polyimide planarization, and lift-off processes technology, an uncooled 1.3-μm, 10-Gb/s directly modulated MQW ridge waveguide laser diode was successfully fabricated. The threshold current and the slope efficiency were 7 mA and 0.48 mW/mA, respectively. The directly modulated bandwidths of 11 and 9.2 GHz were achieved at room temperature and 80 Celsius degrees, respectively.
Resumo:
MMI (multimode interference) coupler, modulator and switch based on SOI (silicon- on-insulator) have been become more and more attractive in optical systems since they show important performances. SiO2 thin cladding layers (<1.0mum) can be used in SOI waveguide due to the large index step between Si and SiO2, making them compatible with the VLSI technology. The design and fabrication of multimode interference (MMI) optical coupler, modulator and switche in SOI technology are presented in the paper. The results demonstrated that the modulator has an extinction ratio of -11.0dB and excess loss of -2.5dB, while the optical switch has a crosstalk of -12.5dB and responding time of less than 20 mus.
Resumo:
The authors have designed and fabricated 2x2 parabolically tapered MMI coupler with large cross-section and large space between difference ports using Silicon-on-Insulator ( SOI) technology. The devices demonstrate a minimum uniformity of 0.8dB and 30% shorter than the straight MMI coupler.
Resumo:
Integrated multimode interference coupler based on silicon-on-insulator has been become a kind of more and more attractive device in optical systems. Thin cladding layers (<1.0mum) can be used in SOI waveguide due to the large index step between Si and SiO2, making them compatible with the VLSI technology. Here we demonstrate the design and fabrication of multimode interference (MMI) optical couplers and optical switches in SOI technology.
Resumo:
The semiconductor microlasers with an equilateral triangle resonator which can be fabricated by dry etching technique from the laser wafer of the edge emitting laser, are analyzed by FDTD technique and rate equations. The results show that ETR microlaser is suitable to realize single mode operation. By connecting an output waveguide to one of the vertices of the ETR, we still can get the confined modes with high quality factors. The EM microlasers are potential light sources for photonic integrated circuits.
Resumo:
Resumo:
Experimental electron diffraction patterns and high resolution images were used to determine the space group and unit cell dimensions of 2,3,6,7,10,11-hexakispentyloxytriphenylene. Subsequently the molecular conformation was calculated by energy minimized package in Cerius2. Using this method, we got the HPT crystal structure: space group: P6/mmm; lattice type: hexogonal; the lattice parameters are a = b = 20.3 angstrom, c = 3.52 angstrom, = = 90 degrees, = 120 degrees. The core of HPT is not perpendicular to the column. The angle between a axis and HPT core plane is 9 degrees which cannot be seen in b-c projection. The simulated ED patterns and HREM images are good agreement with the experimental ED patterns and HREM images.
Resumo:
Europium and terbium complexes with 1,10-phenanthroline were introduced into silica gel by the sol-gel method. The luminescence behavior of the complexes in silica gels was studied compared with the corresponding solid state complexes by means of emission, excitation spectra and lifetimes. (C) 1998 Published by Elsevier Science S.A. All rights reserved.