402 resultados para Self-assembled monolayers (SAMs)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(2-acrylamido-hexadecylsulfonic acid) (PAMC16S) forms a stable monolayer on a pure water surface. More closely packed monolayers can be obtained when the subphase contains Cd2+ or Ca2+. Self-assembled monolayers have been formed on gold surfaces and characterized by contact angle measurement, XPS and electrochemical analysis. The results show that the monolayers are hydrophobic with the hydrophilic sulfonic acid groups adjacent to the metal surfaces and with the hydrocarbon chains extended from the surfaces. The monolayers exhibit great adsorption stability during the faradaic reactions, illustrating the advantage of polymeric LB films in potential applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was demonstrated feasible that underpotential deposition(UPD) of copper on a monolayer-modified gold substrate can be used to determine the gold electrode area. The deposition and stripping of a Cu adlayer can take Place reversibly and stably at a bared or a self-assembled monolayer modified gold electrode. The growth kinetics of decanethiol/Au was also investigated via Cu UPD. The difference between the assembling kinetics determined by UPD and that by quartz crystal microbalance measurements reveals the configuration transmutation of the assembled molecules from a disordered arrangement to an ordered arrangement during the self-assembling processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembled monolayer(SAM) of 11-mercaptoundecanoic acid [HS(CH2)(10)COOH] was formed on a gold electrode and the effect of the charge of end group on the electrochemical response of Fe(CN)(6)(3-) at the SAM modified electrode was studied by cyclic voltammetry. At high pH, when the -COOH groups are dissociated, the current of Fe(CN)(6)(3-) is suppressed; as the solution pH is lowered, the current of Fe(CN)(6)(3-) increases. The electrochemical titration curve was obtained by correlating the currents of Fe(CN)(6)(3-) to the different pH values of electrolyte, from which the surface pK(a) was obtained to be 3. 0+/-0. 2. Furthermore, the reason of small pK(a) value was explained using SAMs of different surface coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate the self-assembly of ionic liquids (ILs)-stabilized Pt nanoparticles into two-dimensional (2D) patterned nanostructures at the air-water interface under ambient conditions. Here, ILs are not used as solvents but as mediators by virtue of their pronounced self-organization ability in synthesis of self-assembled, highly organized hybrid Pt nanostructures. It is also found that the morphologies of the 2D patterned nanostructures are directly connected with the quantities of ILs. Due to the special structures of ILs-stabilized Pt nanoparticles, 2D patterned Pt nanostructures can be formed through the pi-pi stack interactions and hydrogen bonds. The resulting 2D patterned Pt nanostructures exhibit good electrocatalytic activity toward oxygen reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterned self-adaptive PS/P2VP mixed polymer brushes were prepared by "grafting to" approach combining with microcontact printing (muCP). The properties of the patterned surface were investigated by lateral force microscopy (LFM), XPS and water condensation figures. In the domains with grafted P2VP, the PS/P2VP mixed brushes demonstrated reversible switching behavior upon exposure to selective solvents for different components. The chemical composition of the top layer as well as the surface wettability can be well tuned due to the perpendicular phase segregation in the mixed brushes. While in the domains without grafted P2VP, the grafted PS did not have the capability of switching. The development and erasing of the pattern is reversible under different solvent treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles with size 3-10 nm (diameter) were prepared by the reduction of HAuCl4 in a CTAB/octane + 1-butanol/H2O reverse micelle system using NaBH4 as the reducing agent. The as-formed gold nanoparticle colloid was characterized by UV/vis absorption spectrum and transmission electron microscopy(TEM). Various capping ligands, such as alkylthiols with different chain length and shape, trioctylphosphine (TOP), and pyridine are used to passivate the gold nanoparticles for the purpose of self-organization into superstructures. It is shown that the ligands have a great influence on the self-organization of gold nanoparticles into superlattices, and dodecanethiol C12H25SH is confirmed to be the best ligand for the self-organization. Self-organization of C12H25SH-capped gold nanoparticles into 1D, 2D and 3D superlattices has been observed on the carbon-coated copper grid by TEM without using any selective precipitation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new kind of self-assembled monolayer (SAM) formed in aqueous solution through the pre-formed inclusion complexes (abbreviated CD . C-n) between alpha-, beta-cyclodextrins (CDs) and alkanethiols (CH3(CH2)(n-1)SH, n = 10, 14 and 18) was prepared successfully on gold electrodes. High-resolution H-1 NMR was used to confirm the formation of CD . C-n. X-ray photoelectron spectroscopy, cyclic voltammetry and chronoamperometry were used to characterize the resulting SAMs (denoted as M-CD . Cn). It was found that M-CD . Cn were more stable against repeated potential cycling in 0.5 M H2SO4 than SAMs of CH3(CH2)(n-1)SH (denoted as M-Cn), with a relative sequence of Mbeta-CD . Cn > Malpha-CD . Cn > M-Cn. In addition, an order of blocking the electron transfer between gold electrodes and redox couples (both Fe(CN)(6)(3-) and Ru(NH3)(6)(3+)) in solution, M-CD . C10 > M-CD . C14 > M-CD . C18, was observed. A plausible explanation is provided to elucidate some of the observations. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel kind of K+ sensor with valinomycin-incorporated bilayers supported on a gold electrode consisting of self-assembled alkanethiol monolayers (SAMs) and a lipid monolayer has been fabricated successfully. The lipid monolayer is deposited on the alkylated surface of the first alkanethiol monolayer through three different methods, such as the Langmuir-Blodgett (LB) technique, painted method and painted-frozen method. The response of K + sensors produced by a painted or painted-frozen lipid monolayer on an alkanethiol alkylated gold electrode is larger than that by the LB method, which is due to the difference in fluidity of the three kinds of bilayers. Selectivity coefficients KK+, Na+, KK+, Li+, KK+, Ca2+ and KK+, Mg2+ are 10(-4), 10(-4), 2 x 10(-5) and 3 x 10(-5) respectively, and there is no obvious difference among different fabricating methods. A linear response toward the potassium ion was found in the range from 10(-1) M to 10(-5) M with the detection limit of 10(-6) M. The sensor has a slope of 60 mV per decade. Meanwhile, the longevity of the sensor was improved obviously for at least two months at about -10 degrees C. The higher stability shows the possibility to fabricate a practical biosensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes the rapid and label-free detection of the white spot syndrome virus (WSSV) using a surface plasmon resonance (SPR) device based on gold films prepared by electroless plating. The plating condition for obtaining films suitable for SPR measurements was optimized. Gold nanoparticles adsorbed on glass slides were characterized by transmission electron microscopy (TEM). Detection of the WSSV was performed through the binding between WSSV in solution and the anti-WSSV single chain variable fragment (scFv antibody) preimmobilized onto the sensor surface. Morphologies of the as-prepared gold films, gold films modified with self-assembled alkanethiol monolayers, and films covered with antibody were examined using an atomic force microscope (AFM). To demonstrate the viability of the method for real sample analysis, WSSV of different concentrations present in a shrimp hemolymph matrix was determined upon optimizing the surface density of the antibody molecules. The SPR device based on the electroless-plated gold films is capable of detecting concentration of WSSV as low as 2.5 ng/mL in 2% shrimp hemolymph, which is one to two orders of magnitude lower than the level measurable by enzyme-linked immunosorbant assays. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si nanoquantum dots have been formed by self-assembled growth on the both Si-O-Si and Si-OH bonds terminated SiO2 surfaces using the low-pressure chemical vapor deposition (LPCVD) and surface thermal decomposition of pure SiH4 gas. We have experimentally studied the variation of Si. dot density with Si-OH bonds density, deposition temperature and SiH4 pressure, and analyzed qualitatively the formation mechanism of the Si nanoquantum dots based on LPCVD surface thermal dynamics principle. The results are very. important for the control of the density and size of Si nanoquantum dots, and have potential applications in the new quantum devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-confined Stark effects in GaAs/AlxGa1-xAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that the electron and hole energy levels and the optical transition energies can cause blueshifts when the electric field is applied along the opposite to the growth direction. Our calculated results are useful for the application of hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the exciton states in vertically stacked self-assembled quantum disks within the effective mass approximation. The energy spectrum of the electron and hole is calculated using the transfer matrix formalism in the adiabatic approximation. The Coulomb interaction between the electron and the hole is treated accurately by the direct diagonalization of the Hamiltonian matrix. The effect of the vertical alignment of the disks on the ground energy of heavy- and light-hole exciton is presented and discussed. The binding energy is discussed in terms of the probability of the ground wave function. The ground energy of heavy- and light-hole excitons as a function of the magnetic field is presented and the effect of the disk size (the radius of disks) on the exciton energy is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, growth of GaN-based materials-related quantum dots has become a hot topic in semiconductor materials research. Considerable efforts have been devoted to growth of self-assembled quantum dots of GaN-based materials via MOCVD (Metal Organic Chemical Vapor Deposition) and there are a lot of relevant literatures. There is, however, few review papers for the topic. In this paper, different experimental methods for fabrication of quantum dots of GaN-based materials via MOCVD are critically reviewed and the experimental conditions and parameters, which may affect growth of the quantum dots, are analyzed, with an aim at providing some critical reference for the related future experiment research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots are fabricated on a GaAs substrate by molecular beam epitaxy. The dots are covered by several monolayers of In0.2Ga0.8As before a GaAs cap layer and an in situ postgrowth annealing is performed to tune the emission to higher energy. The temperature dependence of photoluminescence from this structure demonstrates a slower redshift rate of the peak position, a gradual broadening of the linewidth and an abnormal enhancement of integrated intensity as the temperature is increased from 15 to 300 K. These phenomena are closely related to the introduction of an InGaAs layer and to the intermixing of In and Ga atoms during annealing. We propose a model to explain the unusual increase in PL intensity, which fits the experimental data well. (C) 2000 American Institute of Physics. [S0021-8979(00)04618-1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InxGa1-xAs quantum dots (QDs) on (311) and (100) GaAs surfaces have been grown by conventional solid source molecular beam epitaxy. Spontaneously ordering alignment of InxGa1-xAs QDs with lower In content around 0.3 has been observed on As-terminated (B type) surfaces. The direction of alignment orientation of the QDs formation differs from the direction of misorientation of the (311) B surface, and is strongly dependent upon the In content x. The ordering alignment becomes significantly deteriorated as the In content is increased to above 0.5 or as the QDs are formed on (100) and (311) Ga-terminated (A type) substrates.