728 resultados para GaN Buffer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is studied whether there is any regular relationship between the yellow luminescence band and electron mobility of n-type GaN. For a series of GaN samples grown with the same Si doping, it is found that the electron mobility decreases with an increase of relative intensity of yellow luminescence, accompanied by an increase of edge dislocation density. Further research indicates that it is acceptors introduced by edge dislocations which lead to the concomitant changes of yellow luminescence and electron mobility. Similar changes are induced by Si doping in the n-type GaN samples with relatively low edge dislocation density. However, the relationship between the yellow luminescence and electron mobility of n-type GaN is not a simple one. A light Si doping may simultaneously increase yellow luminescence and electron mobility when Si doping plays a dominant role in reducing the carrier scattering. This means that even the intensity of yellow luminescence is often used as an indicator of material quality for GaN, it does not have any monotonous correlation with the electron mobility of GaN. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystalline, surface, and optical properties of the (10 (1) over bar(3) over bar) semipolar GaN directly grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) were investigated. It was found that the increase of V/III ratio led to high quality (10 (1) over bar(3) over bar) oriented GaN epilayers with a morphology that may have been produced by step-flow growth and with minor evidence of anisotropic crystalline structure. After etching in the mixed acids, the inclined pyramids dominated the GaN surface with a density of 2 X 10(5) cm(-2), revealing the N-polarity characteristic. In the low-temperature PL spectra, weak BSF-related emission at 3.44eV could be observed as a shoulder of donor-bound exciton lines for the epilayer at high V/III ratio, which was indicative of obvious reduction of BSFs density. In comparison with other defect related emissions, a different quenching behavior was found for the 3.29 eV emission, characterized by the temperature-dependent PL measurement. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thick GaN films of high quality are directly grown on wet-etching patterned sapphire in a vertical hydride vapour phase epitaxy reactor. The optical and structural properties of GaN films are studied using scanning electronic microscopy and cathodoluminescence. Test results show that initial growth of hydride vapour phase epitaxy GaN occurs not only on the mesas but also on the two asymmetric sidewalls of the V-shaped grooves without selectivity. After the two-step coalescence near the interface, the GaN films near the surface keep on growing along the direction perpendicular to the long sidewall. Based on Raman results, GaN of the coalescence region in the grooves has the maximum residual stress and poor crystalline quality over the whole GaN film, and the coalescence process can release the stress. Therefore, stress-free thick GaN films are prepared with smooth and crack-free surfaces by this particular growth mode on wet-etching patterned sapphire substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the measured capacitance-voltage curves and the photocurrent spectrum obtained from the Ni Schottky contact on a strained Al0.3Ga0.7N/GaN heterostructure, the value of the relative permittivity of the AlGaN barrier layer was analysed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is shown that the calculated values of the relative permittivity are different from those formerly reported, and reverse biasing the Ni Schottky contact has an influence on the value of the relative permittivity. As the reverse bias increases from 0 V to - 3 V, the value of the relative permittivity decreases from 7.184 to 7.093.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si-doped nonpolar a-plane GaN films were grown on nanopatterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) system. The structure, morphology and field emission properties of the sample were studied by means of high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and field emission measurement. The XRD analysis shows that the sample is a nonpolar a-plane (11 (2) over bar0) GaN film. The field emission measurement shows that the nonpolar GaN films exhibit excellent field emission properties with a threshold emission field of as low as 10 V/mu m at a current density of 0.63 mu A/cm(2), and a high field emission current density of 74 mA/cm(2) at an applied field of 24 V/mu m. Moreover, the Fowler-Nordheirn plot of the sample fits a near linear relation. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured hexagonal InN overlayers were heteroepitaxially deposited on vertically oriented c-axis GaN nanorods by metal-organic chemical vapor deposition. InN overlayers grown in radial directions are featured by a nonpolar heteroepitaxial growth mode on GaN nanorods, showing a great difference from the conventional InN growth on (0001) c-plane GaN template. The surface of InN overlayers is mainly composed of several specific facets with lower crystallographic indices. The orientation relationship between InN and GaN lattices is found to be [0001](InN) parallel to [0001](GaN) and [1100](InN)parallel to[1100](GaN). A strong photoluminescence of InN nanostructures is observed. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3177347]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polarization-resolved edge-emitting electroluminescence (EL) studies of InGaN/GaN MQWs of wavelengths from near-UV (390 nm) to blue (468 nm) light-emitting diodes (LEDs) are performed. Although the TE mode is dominant in all the samples of InGaN/GaN MQW LEDs, an obvious difference of light polarization properties is found in the InGaN/GaN MQW LEDs with different wavelengths. The polarization degree decreases from 52.4% to 26.9% when light wavelength increases. Analyses of band structures of InGaN/GaN quantum wells and luminescence properties of quantum dots imply that quantum-dot-like behavior is the dominant reason for the low luminescence polarization degree of blue LEDs, and the high luminescence polarization degree of UV LEDs mainly comes from QW confinement and the strain effect. Therefore, indium induced carrier confinement (quantum-dot-like behavior) might play a major role in the polarization degree change of InGaN/GaN MQW LEDs from near violet to blue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A close relationship is found between the blue and yellow luminescence bands in n-type GaN films, which are grown without intentional acceptor doping. The intensity ratio of blue luminescence to yellow luminescence (I-BL/I-YL) decreases with the increase in edge dislocation densities as demonstrated by the (102) full width at half maximum of x-ray diffraction. In addition, the I-BL/I-YL ratio decreases with the increase in Si doping. It is suggested that the edge dislocation and Si impurity play important roles in linking the blue and yellow luminescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilute magnetic nonpolar GaN films with a Curie temperature above room temperature have been fabricated by implanting Mn ions into unintentionally doped nonpolar a-plane (1 1 (2) over bar 0) GaN films and a subsequent rapid thermal annealing (RTA) process. The impact of the implantation and RTA on the structure and morphology of the nonpolar GaN films is studied in this paper. The scanning electron microscopy analysis shows that the RTA process can effectively recover the implantation-indUced damage to the surface morphology of the sample. The X-ray diffraction and micro-Raman scattering spectroscopy analyses show that the RTA process can just partially recover the implantation-induced crystal deterioration. Therefore, the quality of the Mn-implanted nonpolar GaN films should be improved further for the application in spintronic devices. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally stimulated luminescence spectroscopy has been applied to study the deep centres in unintentionally doped high resistivity GaN epilayers grown by the metal organic chemical vapour deposition method on c-sapphire substrates. Two trap states with activation energies of 0.12 and 0.62 eV are evaluated from two luminescence peaks at 141.9 and 294.7 K in the luminescence curve. Our spectroscopy measurement, in combination with more accurate first-principles studies, provided insights into the microscopic origin of these levels. Our investigations suggest that the lower level at 0.12 eV might originate from C-N, which behaves as a hole trap state; the deeper level at 0.62 eV can be correlated with V-Ga that corresponds to the yellow luminescence band observed in low-temperature photoluminescence spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and magnetic properties of Sm ion-implanted GaN with different Sm concentrations are investigated. XRD results do not show any peaks associated with second phase formation. Magnetic investigations performed by superconducting quantum interference device reveal ferromagnetic behavior with an ordering temperature above room temperature in all the implanted samples, while the effective magnetic moment per Sm obtained from saturation magnetization gives a much higher value than the atomic moment of Sm. These results could be explained by the phenomenological model proposed by Dhar et al. [Phys. Rev. Lett. 94(2005) 037205, Phys. Rev. B 72(2005) 245203] in terms of a long-range spin polarization of the GaN matrix by the Sm atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study on the nucleation and initial growth kinetics of InN on GaN, especially their dependence on metalorganic chemical vapour deposition conditions. It is found that the density and size of separated InN nano-scale islands can be adjusted and well controlled by changing the V/III ratio and growth temperature. InN nuclei density increases for several orders of magnitude with decreasing growth temperature between 525 and 375 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters less than 100 nm, whereas at elevated temperatures the InN islands grow larger and become well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. The temperature dependence of InN island density gives two activation energies of InN nucleation behaviour, which is attributed to two different kinetic processes related to In adatom surface diffusion and desorption, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From a single process, GaN layers were laterally overgrown on maskless stripe-patterned (111) silicon-on-insulator (SOI) substrates by metalorganic chemical vapor deposition. The influence of stress on the behavior of dislocations at the coalescence during growth was observed using transmission electron microscopy (TEM). Improvement of the crystallin equality of the GaN layer was demonstrated by TEM and micro-Raman spectroscopy. Furthermore, the benefits of SOI substrates for GaN growth are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the deformation mechanisms of nonpolar GaN thick films grown on m-sapphire by hydride vapor phase epitaxy (HVPE) are investigated using nanoindentation with a Berkovich indenter, cathodoluminescence (CL), and Raman microscopy. Results show that nonpolar GaN is more susceptible to plastic deformation and has lower hardness than c-plane GaN. After indentation, lateral cracks emerge on the nonpolar GaN surface and preferentially propagate parallel to the < 11 (2) over bar0 > orientation due to anisotropic defect-related stresses. Moreover, the quenching of CL luminescence can be observed to extend exclusively out from the center of the indentations along the < 11 (2) over bar0 > orientation, a trend which is consistent with the evolution of cracks. The recrystallization process happens in the indented regions for the load of 500 mN. Raman area mapping indicates that the distribution of strain field coincides well with the profile of defect-expanded dark regions, while the enhanced compressive stress mainly concentrates in the facets of the indentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of growth temperature and V/III ratio on the InN initial nucleation of islands on the GaN (0 0 0 1) surface were investigated. It is found that InN nuclei density increases with decreasing growth temperature between 375 and 525 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters of less than 100 nm, whereas at elevated temperatures the InN islands can grow larger and well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. At a given growth temperature of 500 degrees C, a controllable density and size of separated InN islands can be achieved by adjusting the V/III ratio. The larger islands lead to fewer defects when they are coalesced. Comparatively, the electrical properties of the films grown under higher V/III ratio are improved.