369 resultados para polyamide film


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we reported successful growth of high-quality GaAs/Si epilayers by using a very thin amorphous Si film as buffer layer. In this paper, the impurity properties of this kind of GaAs/Si epilayers have been studied by using PL spectrum, SIMS and Hall measurement. Compared to a typical PL spectrum of the GaAs/Si epilayers grown by conventional two-step method, a new peak was observed in our PL spectrum at the energy of 1.462 eV, which is assigned to the band-to-silicon acceptor recombination. The SIMS analysis indicates that the silicon concentration in this kind of GaAs/Si epilayers is about 10(18) cm(-3). But its carrier concentration (about 4 x 10(17) cm(-3)) is lower than the silicon concentration. The lower carrier concentration in this kind of GaAs/Si epilayer can be interpreted both as the result of higher compensation and as the result of the formation of the donor-defect complex. We also found that the high-quality and low-Si-concentration GaAs/Si epilayers can be regrown by using this kind of GaAs/Si epilayer as substrate. The FWHM of the X-ray (004) rocking curve from this regrowth GaAs epilayer is 118 '', it is much less than that of the first growth GaAs epilayer (160 '') and other reports for the GaAs/Si epilayer grown by using conventional two-step method (similar to 200 '').

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiN_x:H by HF solution. A low etch rate was achieved by increasing the SiH_4 gas flow rate or annealing temperature, or decreasing the NH_3 and N_2 gas flow rate. Concen-trated, buffered, and dilute hydrofluoric acid were utilized as etchants for SiO_2 and SiN_x:H. A high etching selectivity of SiO_2 over SiN_x:H was obtained using highly concentrated buffered HF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron-doped hydrogenated silicon films with different gaseous doping ratios (B_2H_6/SiH_4) were deposited in a plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure of the films was investigated by atomic force microscopy (AFM) and Raman scattering spectroscopy. The electrical properties of the films were characterized by their room temperature electrical conductivity (σ) and the activation energy (E_a). The results show that with an increasing gaseous doping ratio, the silicon films transfer from a microcrystalline to an amorphous phase, and corresponding changes in the electrical properties were observed. The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions. The measurements of the Ⅰ-Ⅴ characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04, and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it. The junction with such a recombination layer has a small resistance, a nearly ohmic contact, and a negligible optical absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer,all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here, we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thick GaN films were grown on GaN/sapphire template in a vertical HVPE reactor. Various material characterization techniques,including AFM, SEM, XRD, RBS/Channeling, CL, PL, and XPS, were used to characterize these GaN epitaxial films. It was found that stepped/terraced structures appeared on the film surface,which were indicative of a nearly step-flow mode of growth for the HVPE GaN despite the high growth rate. A few hexagonal pits appeared on the surface, which have strong light emission. After being etched in molten KOH, the wavy steps disappeared and hexagonal pits with {1010} facets appeared on the surface. An EPD of only 8 ×10~6cm~(-2) shows that the GaN film has few dislocations. Both XRD and RBS channeling indicate the high quality of the GaN thick films. Sharp band-edge emission with a full width at half maximum(FWHM)of 67meV was observed, while the yellow and infrared emissions were also found. These emissions are likely caused by native defects and C and O impurities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kind of hydrogenated diphasic silicon films has been prepared by a new regime of plasma enhanced chemical vapor deposition (PECVD) near the phase transition regime from amorphous to nanocrystalline. The microstructural properties of the films have been investigated by the micro-Raman and Fourier transformed Infrared (FT-IR) spectra and atom force microscopy (AFM). The obtained Raman spectra show not only the existence of nanoscaled crystallites, but also a notable improvement in the medium-range order of the diphasic films. For the FT-IR spectra of this kind of films, it notes that there is a blueshift in the Si-H stretching mode and a redshift in the Si-H wagging mode in respect to that of typical amorphous silicon film. We discussed the reasons responsible for these phenomena by means of the phase transition, which lead to the formation of a diatomic hydrogen complex, H-2* and their congeries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports a method of depositing SiO2, SiNx, a:Si, Si3N4 and SiOxNy dielectric thin films by electron cyclotron resonance plasma chemical vapor deposition (ECR CVD) on InP, InGaAs and other compound semiconductor optoelectronic devices,and give a technology of depositing dielectric thin films and optical coatings by ECR CVD on Laser's Bars. The experiment results show the dielectric thin films and optical coatings are stable at thermomechanical property,optical properties and the other properties. In addition, the dielectric thin film deposition that there is low leakage current is reported for using as diffusion and ion implatation masks in the paper. In the finally, the dielectric film refractive index can be accurately controlled by the N-2/O-2/Ar gas flow rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical band gap (E-g) of the boron (B)-doped hydrogenated nano-crystalline silicon (nc-Si:H) films fabricated using plasma enhanced chemical vapor deposition (PECVD) was investigated in this work. The transmittance of the films were measured by spectrophotometric and the E-g was evaluated utilizing three different relations for comparison, namely: alphahnu=C(hnu-E-g)(3), alphahnu=B-0(hnu-E-g)(2), alphahnu=C-0(hnu-E-g)(2). Result showed that E-g decreases with the increasing of Boron doping ratio, hydrogen concentration, and substrate's temperature (T-s), respectively. E-g raises up with rf power density (P-d) from 0.45W.cm(-2) to 0.60w.cm(-2) and then drops to the end. These can be explained for E-g decreases with disorder in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased emphasis on sub-micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200 nm. It is demonstrated that the crystalline quality of as-grown thin SOS films by the CVD method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self-silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a greater improvement in silicon layer crystallinity and channel carrier mobility, evidenced, respectively, by double crystal X-ray diffraction and electrical measurements. We concluded that the thin SPE SOS films are suitable for application to high-performance CMOS circuitry. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain relaxation in initially flat SiGe film on Si(1 0 0) during rapid thermal annealing is studied. The surface roughens after high-temperature annealing, which has been attributed to the intrinsic strain in the epilayers. It is interesting to find that high-temperature annealing also results in roughened interface, indicating the occurrence of preferential interdiffusion. It is suggested that the roughening at the surface makes the intrinsic strain in the epilayer as well as the substrate unequally distributed, causing preferential interdiffusion at the SiGe/Si interface during high-temperature annealing. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and alpha-Si layers were deposited by magnetron sputtering respectively and annealed at 480A degrees C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between gamma-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of gamma-Al2O3, which was formed at the early stage of annealing.