311 resultados para Screen printed carbon electrode (SPCE)
Resumo:
Methylene blue-intercalated a-zirconium phosphate (MBZrP) micro particles in deionized water were deposited onto the surface of graphite powder to prepare graphite powder-supported MBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite. The composite was used as electrode material to fabricate a surface-renewable, rigid, leak-free carbon ceramic composite electrode, bulk-modified with methylene blue (MB). In the configuration, alpha-zirconium phosphate was employed as a solid host for MB, which acted as a catalyst. Graphite powder ensured conductivity by percolation, the silicate provided a rigid porous backbone and the methyl groups endowed hydrophobicity and thus limited the wetting section of the modified electrode. Peak currents of the MBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled at high scan rates. Square-wave voltammetric study revealed that MBZrP immobilized in carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution with pH ranged from 0.44 to 2.94. In addition, the chemically modified electrode showed an electrocatalytic activity toward nitrite reduction at +0.15 V (vs. Ag/AgCl) in acidic aqueous solution (pH=0.44). The linear range and detection limit are 1 x 10(-6)-4 x 10(-3) mol L-1 and 1.5 x 10(-7) mol L-1, respectively.
Resumo:
The electrochemiluminescence (ECL) of dichlorotris (1,10-phenanthroline) ruthenium (11) [Ru(phen)(3)(2+)] with peroxydisulfate (S2O82-) was first described. The use of carbon paste electrodes, organic solvent modified electrodes, allowed obtaining ECL in purely aqueous solution. The ECL produced by the reaction of electrogenerated C Ru(phen)(3)(2+) with the strongly oxidizing intermediate SO4-., was observed only when the applied potential was negative enough to reduce Ru(phen)(3)(2+). In comparison with Ru(bpy)(3)(2+)/S2O82- ECL, the Ru(phen)(3)(2+)/O-8(2-)/S2O82- ECL was more stable in aqueous solution. It was not affected by the storage of the carbon paste electrodes, and it quenched only at quite high S2O82- concentrations. The ECL intensity was a function of S2O82- concentration, increasing linearly with the S2O82- concentration from 5 X 10(-6) to 2 X 10(-3) mol l(-1), and dropping off sharply at S2O82- concentration higher than 20 mmol l(-1). The proposed ECL method with Ru(phen)(3)(2+) was sensitive and selective for the determination of S2O82-. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A surface-renewable tris (1,10-phenanthroline-5, 6-dione) iron (II) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD-modified electrode presented pH dependent voltammetric behavior, and its peak currents were diffusion-controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0. 4). In the, presence of iodate, clear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 x 10(-6)-1 x 10(-2) mol/L, 7.448 muA.L/mmol, 1.2 x 10(-6) mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface-renewal by simple mechanical polishing.
Resumo:
A new class of polyoxomelalate (POM)-modified electrodes is fabricated by the sol-gel technique and demonstrated for nitrite sensing. The electrode material comprises an interconnected dispersion of graphite powder and a uniform dispersion of isopolymolybdic anions (Mo8O26) in a porous methylsilicate matrix. The chemically modified electrodes showed well-defined cyclic voltammograms with three reversible redox couples in acidic aqueous solutions because of the good physicochemical compatibility of Mo8O26 and the carbon ceramic matrix. The Mo8O26-modified electrodes show good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A conductive carbon ceramic composite electrode (CCE) comprised of cc-type 1:12 phosphomolybdic acid (PMo12) and carbon powder in an organically modified silicate matrix was fabricated using a sol-gel method and characterized by scanning electron microscopy, cyclic voltammetry, and Osteryoung square-wave voltammetry. Osteryoung square-wave voltammograms of the modified electrode immersed in different acidic aqueous solutions present the dependence of current and redox potential on pH. The PMo12-doped CCE shows more reversible reaction kinetics, good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling or dopant leaching. Moreover, the modified electrode shows good catalytic activity for the electrochemical reduction of bromate.
Resumo:
Prussian blue (PB) supported on graphite powder was prepared by the chemical deposition technique and subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive graphite organosilicate composite. The composite was used as the electrode material to fabricate a three-dimensional PB-modified electrode. PB acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The chemically modified electrode can electrocatalyze the oxidation of hydrazine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability and good repeatability of surface-renewal. Hydrodynamic voltammetric experiments were performed to characterize the electrode as an amperometric sensor for the determination of hydrazine. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new type of inorganic-organic hybrid material incorporating carbon powder and alpha -type 2:18-molybdodiphosphate (P2Mo18) in a methyltrimethoxysilane (MTMOS) based gel has been produced by a sol-gel process and used to fabricate a chemically modified electrode. The P2Mo18-doped carbon ceramic composite electrode was characterized using SEM and cyclic voltammetry. Square-wave voltammetry with an excellent sensitivity was exploited to conveniently investigate the dependence of current and half-wave potential (E-1/2) on pH. The chemically modified electrode has some advantages over the modified film electrodes constructed by the conventional methods, such as long-term stability, reproducibility, and especially repeatability of surface-renewal by simple polishing in the event of surface fouling or dopant leaching. In addition, the modified electrode shows a good catalytic activity for the electrochemical reduction of bromate in an acidic aqueous solution. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new detection scheme for the determination of adsorbable coreactants of Ru(bpy)(3)(2+) electrochemiluminescent reaction is presented. It is based on selective preconcentration of coreactant onto an electrode, followed by Ru(bpy)(3)(2+) electrochemiluminescent detection. The coreactant employed is chlorpromazine. It was sensitively detected after 5-min preconcentration onto a lauric acid-modified carbon paste electrode. The linear concentration range was found to occur from 1 x 10(-8) to 3 x 10(-6) mol L-1 with a detection limit of 3.1 x 10(-9) mol L-1. The total analysis time is less than 10 min. As a result of selective preconcentration and medium exchange, such remarkable selectivity is achieved that reproducible quantitation of chlorpromazine in urine is possible.
Resumo:
The electrochemiluminescence (ECL) of the Ru(bgy)(3)(2-)/S2O82- system in purely aqueous solution at a carbon paste electrode can be clearly seen with the naked eye for Ru(bpy)(3)(2+) concentrations higher than 1 mmol L-1. The log-log plot of the emmitted light intensity vs. Ru(bpy)(3)(2+) concentration is linear over the region 10(-3)-10(-7) mol L-1 with a correlation coefficient of 0.997. The ECL intensity increases linearly with the S2O82- concentration from 10(-6) mol L-1 up to 0.3 mmol L-1 and drops off sharply at concentrations higher than 1 mmol L-1. In addition, a weak ECL signal was obtained when the potential was biased more negative than -0.6 V even in the absence of S2O82-.
Resumo:
In this study, electrode responses to a large number of electroactive species with different standard potentials at the molybdenum oxide-modified carbon fibre microdisk array (CFMA) electrode were investigated. The results demonstrated that the electrochemical behavior for those redox species with formal potentials more positive than similar to 0.0 V at the molybdenum oxide-modified CFMA electrode were affected by the range and direction of the potential scan, which were different from that at a bare CFMA electrode. If the lower limit of the potential scan was more positive than the reduction potential of the molybdenum oxide film, neither the oxidation nor the reduction peaks of the redox species tested could be observed. This indicates that electron transfer between the molybdenum oxide film on the electrode and the electroactive species in solution is blocked due to the existence of a high resistance between the film and electrolyte in these potential ranges. If the lower limit of the potential scan was more negative than the reduction potential of the molybdenum oxide film (similar to - 0.6 V), the oxidation peaks of these species occurred at the potentials near their formal potentials. In addition, the electrochemical behavior of these redox species at the molybdenum oxide-modified CFMA electrode showed a diffusionless electron transfer process. On the other hand, the redox species with formal potentials more negative than similar to - 0.2 V showed similar reversible voltammetric behaviors at both the molybdenum oxide-modified CFMA electrode and the bare electrode. This can be explained by the structure changes of the film before and after reduction of the film. In addition we also observed that the peak currents of some redox species at the modified electrode were much larger than those at a bare electrode under the same conditions, which has been explained by the interaction between these redox species and the reduction state of the molybdenum oxide film. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
9,10-Phenanthrenequinone (PQ) supported on graphite powder by adsorption was dispersed in propyltrimethoxysilane-derived gels to yield a conductive composite which was used as electrode material to fabricate a PQ-modified carbon ceramic electrode. In this configuration, PQ acts as a catalyst, graphite powder guarantees conductivity by percolation, the silicate provides a rigid porous backbone, and the propyl groups endow hydrophobicity and thus limit the wetting region of the modified electrode. Square-wave voltammetry was exploited to investigate the pH-dependent electrochemical behavior of the composite electrode and an almost Nernstian response was obtained from pH 0.42 to 6.84. Because the chemically modified electrode can electrocatalyze the reduction of iodate in acidic aqueous solution (pH 2.45), it was used as an amperometric sensor for the determination of iodate in table salt. The advantages of the electrode are that it can be polished in the event of surface fouling, it is simple to prepare, has excellent chemical and mechanical stability, and the reproducibility of surface-renewal is good.
Resumo:
Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A flow injection analysis detection method for glucose is presented which is based on the oxidation of glucose by glucose oxidase followed by chemiluminescent detection of hydrogen peroxide. Both glucose oxidase and hematin, a chemiluminescent reaction catalyst, were bulk-immobilized conveniently by direct mixing with carbon paste, which allows renewal of the electrode surface by simply polishing or cutting to expose a new and fully active surface in the case of fouling. Luminol in reagent solution passed through the flow cell and reacted with hydrogen peroxide produced by the enzyme reactor in the presence of the catalyst to yield light. An applied potential of -0.4 V avoided the electrode fouling effectively. The log-log plot of the emitted light intensity vs glucose concentration was linear over the range of 1-100 mmol L-1 with a correlation coefficient of 0.992. Application of this method to other chemiluminescent and bioluminescent systems is suggested. (C) 1999 Academic Press.
Resumo:
A highly dispersed ultramicro palladium-particle modified carbon fiber microdisk array electrode (Pd-CFE) was employed for capillary electrophoresis-electrochemical (CEEC) detection of hydroxylamine (HA). The Pd particles obtained were in the nanometer scale, had a high electrocatalytic activity towards HA and exhibited good reproducibility and stability. A linear relationship between the current and the analyte concentration was found between 5 x 10(-6) and 1 x 10(-3) mol/l of HA with a correlation coefficient of 0.9992. The detection limit was 5 x 10(-8) mol/l. The applicability of the method for the determination of HA in river water and waste water was investigated.
Resumo:
A highly ordered single crystal carbon material, highly oriented pyrolytic graphite (HOPG) has been successfully employed as a working electrode in an electrochemical quartz crystal microbalance study. RTV silicone rubber is selected to adhere the HOPG film onto the quartz crystal surface. Such modified quartz crystal can oscillate with stable frequency. The electrode modified in this way has good electrochemical properties.