320 resultados para Nanoparticles,Sunscreen,Toxicity,Diatom
Resumo:
A high-efficiency nanoelectrocatalyst based on high-density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au-Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy are employed to characterize the obtained Au-Pt/SiO2. It was found that each hybrid nanosphere is composed of high-density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the AuPt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.
Resumo:
A large-scale process combined sonication with self-assembly techniques for the preparation of high-density gold nanoparticles supported on a [Ru(bpy)(3)](2+)-doped silica/Fe3O4 nanocomposite (GNRSF) is provided. The obtained hybrid nanomaterials containing Fe3O4 spheres have high saturation magnetization, which leads to their effective immobilization on the surface of an ITO electrode through simple manipulation by an external magnetic field (without the need of a special immobilization apparatus). Furthermore, this hybrid nanomaterial film exhibits a good and very stable electrochemiluminescence (ECL) behavior, which gives a linear response for tripropylamine (TPA) concentrations between 5 mu m and 0.21 mM, with a detection limit in the micromolar range. The sensitivity of this ECL sensor can be easily controlled by the amount of [Ru(bpy)(3)](2+) immobilized on the hybrid nanomaterials (that is, varying the amount of [Ru(bpy)(3)](2+) during GNRSF synthesis).
Resumo:
Polyethyleneimine-functionalized platinum nanoparticles (PtNPs) with excellent electrochemiluminescence (ECL) properties were synthesized and applied to the amplified analysis of biomolecules. These particles were prepared at room temperature, with hyperbranched polyethyleneimine (HBPEI) as the stabilizer. The UV/Vis absorption spectra and transmission electron microscopy images clearly confirmed the formation of monodisperse PtNPs. Such particles proved to possess high stability against salt-induced aggregation, enabling them to be employed even under high-salt conditions. Owing to the existence of many tertiary amine groups, these particles exhibited excellent ECL behavior in the presence of tris(2.2'-bipyridyl)ruthenium(II). An HBPEI-coated particle possessed an ECL activity that was at least 60 times higher than that of a tripropylamine molecule. Furthermore, these particles could be immobilized on the 3-aminopropyltriethoxysilane-treated quartz substrates to amplify the binding sites for carboxyl groups. Through this approach, PtNPs were applied to the amplified analysis of the hemin/G-quadruplex DNAzyme by using the luminol/H2O2 chemiluminescence method.
Resumo:
A simple approach combining sonication and sol-gel chemistry was employed to synthesize silica coated carbon nanotube (CNTs) coaxial nanocables. It was found that a homogeneous silica layer can be coated on the surface of the CNTs. This method is simple, rapid, and reproducible. Furthermore, gold nanoparticle supported coaxial nanocables were facilely obtained using amino-functionalized silica as the interlinker. Furthermore, to reduce the cost of Pt in fuel cells, designing a Pt shell on the surface of a noble metal such as gold or silver is necessary. High-density gold/platinum hybrid nanoparticles were located on the surface of I-D coaxial nanocables with high surface-to-volume ratios. It was found that this hybrid nanomaterial exhibits a high electrocatalytic activity for enhancing oxygen reduction (low overpotential associated with the oxygen reduction reaction and almost four-electron electroreduction of dioxygen to water).
Resumo:
We report a new fluorescent detection method for cysteine based on one-step prepared fluorescent conjugated polymer-stabilized gold nanoparticles. The as-prepared fluorescent conjugated polymer-stabilized gold nanoparticles fluoresce weakly due to the fluorescence resonance energy transfer between the fluorophore and the gold nanoparticles. Upon the addition of cysteine, a thiol-containing amino acid, the fluorescence of the colloidal solution increases significantly, indicating that cysteine can modulate the energy transfer between fluorophore and gold. This phenomenon then allows for sensitive detection of cysteine with a limit of detection (LOD) of 25 nM. The linear range of determination of cysteine is from 5 x 10(-8) to 4 x 10(-6) M. None of the other amino acids found in proteins interferes with the determination. Moreover, due to the excellent protecting ability of the fluorescent conjugated polymers, the synthesis of metal nanoparticles and modifying with fluorophores can be accomplished within one step, which makes our method much simpler than conventional methods. We also expect that it will be possible to detect other biologically important analytes based on the fluorescent conjugated polymer-stabilized metal nanoparticles.
Resumo:
In this article, surface enhanced Raman scattering (SERS) of different concentrations of brilliant green (13G) on Ag nanoparticles (AgNPs) has been investigated. The results indicate that only 10(-12) M BG can be detected on AgNPs while as low as 10(-11) M BG can be detected upon the activation of AgNPs by chloride ions. The additional improvement of the detection of BG mainly derives from the increase of the electromagnetic field around AgNPs and partially from the reorientation of BG on AgNPs induced by chloride ions, which was proved by the different spectra feature in the two systems. Adsorption of BG on AgNPs has also been demonstrated in applications of living cells as optical probes based on SERS, indicating that dye-AgNPs can probe the local environment in the living cells. The related cytotoxicity measurements demonstrated that BG-AgNPs produced little cytotoxicity to the cells, which shows great potential in biornedical applications of BG labeled-AgNPs for SERS nanosensors in cells as optical probes. Meanwhile, SERS spectra of BG on AgNPs in the presence chloride ions are expected to be used in living cells as more sensitive optical probes.
Resumo:
In this study. lectin-conjugated gold nanoparticles (GNPs) were prepared by standard biotin-streptavidin chemistry. The lectin-conjugated GNPs call be used as ail indicator for studying the interaction of lectin with glycosyl complex on living cellular Surfaces due to the high affinity of the lectin with saccharides. The interactions of two well-known lectins (Ricinus communis agglutinin and concanavalin A) and three different cell lines (HeLa, 293, and 293T) were selected here to establish this assay. Highly binding affinity of R. communis agglutinin with cells was demonstrated by conventional microscopic and UV-visible spectroscopic Studies. In addition, the binding process can be inhibited by galactose, giving further proof of the binding mechanism. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
A simple method to prepare titania nanomaterials of core-shell structure, hollow nanospheres and mesoporous nanoparticles has been developed. The core-shell nanostructures with NH4Cl as core and TiO2 center dot xH(2)O-NH4Cl as shell were prepared in nonaqueous system by the deposition on the surface of the aggregated NH4Cl crystals, which could be transformed into mesoporous anatase nanoparticles or hollow nanospheres by calcination at 500A degrees C or extraction with methanol, respectively. The hierarchical mesoporous nanostructures benefited the photocatalytic activities of the resultant titania nanomaterials, demonstrated by the UV light photodegradation of Methyl Orange.
Resumo:
NdF3 and TbF3 nanoparticles were successfully synthesized via a solvent extraction route using Cynex923 (R3P=O). X-ray diffraction (XRD) study showed that pure hexagonal phase NdF3 and pure orthorhombic phase TbF3 could be obtained under the current synthetic conditions. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) observations indicated that as-obtained NdF3 nanoplates have a diameter of 50-80 nm and thickness of 10-20 nm and TbF3 products have sphere morphologies with diameter from 70 to 170 nm. The driving force for the growth of NdF3 nanoplates could be attributed to the hexagonal crystal structure. The luminescence properties of NdF3 and TbF3 nanoparticles were investigated, which indicated that NdF3 nanoparticles showed typical emission at 888,1064, and 1328 nm and TbF3 nanoparticles showed characteristic emission of Tb3+ (f-f).