272 resultados para chirped pulse


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO thin films were grown on single-crystal gamma-LiAlO2 (LAO) and sapphire (0001) substrate by pulsed laser deposition (PLD). The structural, optical and electrical properties of ZnO films were investigated. The results show that LAO is more suitable for fabricating ZnO films than sapphire substrate and the highest-quality ZnO film was attained on LAO at the substrate temperature of 550 degrees C. However, when the substrate temperature rises to 700 degrees C, lithium would diffuse from the substrate (LAO) into ZnO film which makes ZnO film on LAO becomes polycrystalline without preferred orientation, the stress in ZnO film increases dominantly and the resistivity of the film decreases exponentially. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the titanate glass is destroyed during irradiation by the femtosecond laser pulses, and (TiO6)(8-) and (TiO4)(4-) anion units are exsolved from the network of the titanate glass. These anion units are rearranged to form some crystals such as anatase and Ba2TiO4 crystals. By Raman spectroscopy, it is found that these crystals have a strong dependence on the intensity of the femtosecond laser pulses. The relation between the generation of these crystals and space distribution of the femtosecond laser power intensity is qualitatively explained. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first demonstration, to our knowledge, of the femtosecond laser operation by using a new alloyed Yb:GYSO crystal as the gain medium. With a 5 at. % Yb3+-doped sample and chirped mirrors for dispersion compensation, we obtained pulses as short as 210 fs at the center wavelength of 1093 nm. The average mode-locking power is 300 mW, and the pulse repetition frequency is 80 MHz. (C) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser induced damage threshold (LIDT) of multi-layer dielectric used in pulse compressor gratings (PCG) was investigated. The sample was prepared by e-beam evaporation (EBE). LIDT was detected following ISO standard 11254-1.2. It was found that LIDTs of normal and 51.2 deg. incidence (transverse electric (TE) mode) were 14.14 and 9.31 J/cm2, respectively. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was pit-concave-plat structure for normal incidence, while it was pit structure for 51.2 deg. incidence with TE mode. The electric field distribution was calculated to illuminate the difference of LIDT between the two incident cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-layer dielectric (MLD) gratings for pulse compressors in high-energy laser systems should provide high diffraction efficiency as well as high laser induced damage thresholds (LIDT). Nonuniform optical near-field distribution is one of the important factors to limit their damage resistant capabilities. Electric field distributions in the gratings and multi-layer film region are analyzed by using Fourier modal method. Optimization of peak electric field in the gratings ridge is performed with a merit function, including both diffraction efficiency and electric field enhancement when the top layer material is HfO2 and SiO2, respectively. A set of optimized gratings parameters is obtained for each structure, which reduce the peak electric field within the gratings ridge to being respective 1.39 and 1.84 times the value of incident light respectively. Finally, we also discuss the effects of gratings refractive index, gratings sidewall angle and incident angle on peak electric field in the gratings ridge. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single- and multi-shot damage behaviors of HfO2/SiO2 high-reflecting (HR) coatings under Nd:YAG laser exposure were investigated. Fundamental aspects of multi-shot laser damage, such as the instability due to pulse-to-pulse accumulation of absorption defect and structural defect effect, and the mechanism of laser induced defect generation, are considered. It was found in multi-shot damage, the main factors influencing laser-induced damage threshold (LIDT) are accumulation of irreversible changes of structural defects and thermal stress that induced by thermal density fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

根据飞秒脉冲锁模钛宝石激光器脉冲压缩的要求,介绍了负色散镜补偿色散的基本原理及其特点。详细阐述了优化Gires-Tournois(OG-T)镜的设计过程,并通过计算机优化得到理想设计膜系。采用离子束溅射的方法镀制了优化Gires—Tournois镜。测量了优化Gires-Tournois镜(编号为OGT#1)的透射率和群延迟色散,并与设计值进行了比较,分析了实测值产生偏差的原因,从而对镀膜参量进行了相应的调整,制造了第二批优化Gires—Tournois镜(编号为OGT#2)。将优化Gires—Tourn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser-induced damages to TiO2 single layers and TiO2/SiO2 high reflectors at laser wavelength of 1064 nm, 800 run, 532 urn, and pulse width of 12 ns, 220 ps, 50 fs, 8 ns are investigated. All films are prepared by electron beam evaporation. The relations among microstructure, chemical composition, optical properties and laser-induced damage threshold (LIDT), have been researched. The dependence of damage mechanism on laser wavelength and pulse width is discussed. It is found that from 1064 nm to 532 nm, LIDT is mainly absorption related, which is determined by film's extinction coefficient and stoichiometric defects. The rapid decrease of LIDT at 800 nm is due to the pulse width factor. TiO2 coatings are mainly thermally by damaged at long pulse (tau >= 220 ps). The damage shows ablation feature at 50 fs. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of plasma formation induced by UV nanosecond pulselaser interaction with SiO2 thin film based on nanoabsorber is proposed. The model considers the temperature dependence of band gap. The numerical results show that during the process of nanosecond pulsed-laser interaction with SiO2 thin film, foreign inclusion which absorbs a fraction of incident radiation heats the surrounding host material through heat conduction causing the decrease of the band gap and consequently, the transformation of the initial transparent matrix into an absorptive medium around the inclusion, thus facilitates optical damage. Qualitative comparison with experiments is also provided. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador: