287 resultados para Structural and optical properties
Resumo:
Two isomorphous new candidates [M(mu(4)-pz25dc)](n) (M = Cd, 1; Zn, 2; pz25dc = pyrazine-2,5-dicarboxylato)for nonlinear optical (NLO) materials have been synthesized hydrothermally and characterized crystallographically as pillared-layer three-nodal frameworks with one four-connected metal nodes and two crystallographically different four-connected ligand nodes. Their optical non-linearities are measured by the Z-Scan technique with an 8 ns pulsed laser at 532 nm. These two coordination polymers both exhibit strong NLO absorptive abilities [alpha(2) = (63 +/- 6) x 10 (12) mW (1) 1, ( 46 +/- 6) x 10 (11) mW (1) 2] and effective self-focusing performance [n(2) = (67 +/- 5) x 10 (18) 1, (13 +/- 3) x 10 (18) m(2) W (1) 2] in 1.02 x 10 (4) 1 and 1.05 x 10 (4) mol dm (3) 2 DMF solution separately. The values of the limiting threshold are also measured from the optical limiting experimental data. The heavy atom effect plays important role in the enhancement of optical non-linearities and optical limiting properties. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Yb3+Er3+-codoped chloride-modified germanate-bismuth-lead glasses have been synthesized by the conventional melting and quenching method. Structural and thermal stability properties have been obtained on the basis of the Raman spectra and differential thermal analysis, which indicate that the PbCl2 addition has an important influence on the phonon density of states, maximum phonon energy, and thermal stability of host glasses. The Judd-Ofelt intensity parameters and quantum efficiencies were calculated on the basis of the Judd-Ofelt theory and lifetime measurements. For the 1.53 mu m emission band, the full widths at the half-maximum increase and peak wavelengths are blueshifted with increasing PbCl2 content. Moreover, the effect of the PbCl2 addition on the phonon density of states, OH- content, and upconversion luminescence has been discussed and evaluated. Our results reveal that, with increasing PbCl2 content, the decrease of phonon density and OH- content contributes more to the enhanced upconversion emissions than that of maximum phonon energy. (c) 2005 Optical Society of America
Resumo:
We study the structural and infrared-to-visible upconversion fluorescence properties of Er3(+)/Yb3+-codoped lead-free germanium-bismuth glass. The structure of lead-free germanium-bismuth-lanthanum glass is investigated by peak-deconvolution of Raman spectroscopy. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> (IT15/2)-I-4 -> S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, are observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm excitation.
Resumo:
Structural and infrared-to-visible upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride lead-germanium-bismuth glass have been studied. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence owing to lower phonon energy. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2)-->I-4(15/2,) I-4(3/2)-->I-4(15/2), and F-4(9/2)-->I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Tm3+/Yb3+-codoped heavy metal oxide-halide glasses have been synthesized by conventional melting and quenching method. Structural properties were obtained based on the Raman spectra, indicating that halide ion has an important influence on the phonon density and maximum phonon energy of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. With increasing halide content, the up-conversion luminescence intensity and blue luminescence lifetimes of Tm3+ ion increase notably. Our results show that with the substitution of halide ion for oxygen ion, the decrease of phonon density and maximum phonon energy of host glasses both contribute to the enhanced up-conversion emissions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the preparation and the characterization Of Y2O3 stabilized ZrO2 thin films produced by electric-beam evaporation method. The optical properties, microstructure, surface morphology and the residual stress of the deposited films were investigated by optical spectroscopy, X-ray diffraction (XRD), scanning probe microscope and optical interferometer. It is shown that the optical transmission spectra of all the YSZ thin films are similar with those of ZrO2 thin film, possessing high transparency in the visible and near-infrared regions. The refractive index of the samples decreases with increasing of Y2O3 content. The crystalline structure of pure ZrO2 films is a mixture of tetragonal phase and monoclinic phase, however, Y2O3 stabilized ZrO2 thin films only exhibit the cubic phase independently of how much the added Y2O3 content is. The surface morphology spectrum indicates that all thin films present a crystalline columnar texture with columnar grains perpendicular to the substrate and with a predominantly open microporosity. The residual stress of films transforms tensile from compressive with the increasing Of Y2O3 molar content, which corresponds to the evolutions of the structure and packing densities. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The non-linear optical (NLO) properties of crystalline beta-BaB2O4 (beta-barium borate, BBO) have been investigated from the chemical bond viewpoint. The contributions of each type of chemical bond to the total NLO coefficient have been quantitatively determined. The calculations indicate that the true space group of BBO is R3 rather than R3c.
Resumo:
Linear and nonlinear optical (NLO) properties of KNbO3 in various phases are calculated from their crystal structures. Nonlinear optical tensor coefficients are found to be very sensitive to the atomic geometry, changing as much as 85% between the ferroelectric tetragonal and rhombohedral phases. The predicted principal refractive indices are also found to be sensitive to their structural changes. In the tetragonal phase KNbO3 has the largest NLO responses, in the orthorhombic phase KNbO3 has the relative larger NLO coefficients, and in the rhombohedral structure KNbO3 has the large and homogeneous NLO properties. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The routing scheme and some permutation properties of a four-shuffle-exchange-based Omega network are discussed. The corresponding optical setup, which is composed of 2-D phase spatial light modulators and calcite plates, is proposed and demonstrated through mapping the inputs to a 2-D array. Instead of one shuffle-exchange followed by one switching operation as in ordinary Omega networks, in our presented system, the shuffle interconnection embraced in the switches is accomplished simply by varying the switching structure of each stage. For the proposed polarization-optical modules, the system is compact in structure, efficient in performance, and insensitive to the environment. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We have investigated the basic properties of subwavelength-diameter hollow optical fiber with exact solutions of Maxwell's equations. The characteristics of modal field and waveguide dispersion have been studied. It shows that the subwavelength-diameter hollow optical fibers have interesting properties, such as enhanced evanescent field, local enhanced intensity in the hollow core and large waveguide dispersion that are very promising for many miniaturized high performance and novel photonic devices. (C) 2007 Optical Society of America.
Resumo:
A new composition content quaternary-alloy-based phase change thin film, Sb-rich AgInSbTe, has been prepared by DC-magnetron sputtering on a K9 glass substrate. After the film has been subsequently annealed at 200degreesC for 30 min, it becomes a crystalline thin film. The diffraction peak of antimony (Sb) are observed by shallow (0.5 degree) x-ray diffraction in the quaternary alloy thin film. The analyses of the measurement from differential scanning calorimetry (DSC) show that the crystallization temperature of the phase change thin film is about 190degreesC and increases with the heating rate. By Kissinger plot, the activation energy for crystallization is determined to be 3.05eV. The reflectivity, refractive index and extinction coefficient of the crystalline and amorphous phase change thin films are presented. The optical absorption coefficient of the phase change thin films as a function of photon energy is obtained from the extinction coefficient. The optical band gaps of the amorphous and crystallization phase change thin films are 0.265eV and 1.127eV, respectively.
Resumo:
NiOx thin films were deposited by reactive DC-magnetron sputtering from a nickel metal target in Ar + O-2 with the relative O-2 content of 5%. Thermal annealing effects on optical properties and surface morphology of NiOx, films were investigated by X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscope and optical measurement. The results showed that the changes in optical properties and surface morphology depended on the temperature. The surface morphology of the films changed obviously as the annealing temperature increased due to the reaction NiOx -> NiO + O-2 releasing O-2. The surface morphology change was responsible for the variation of the optical properties of the films. The optical contrast between the as-deposited films and 400 degrees C annealed films was about 52%. In addition, the relationship of the optical energy band gap with the variation of annealing temperature was studied. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Two kinds of silanes, 3-glycidoxypropyltrimethoxysilane (GLYMO) and 3-trimethoxysililpropylmethacrylate (TMSPM), were used to prepare ormosil waveguide films by the sol-gel method. Thirty percent Ti(OBu)(4) and 70% silane were contained in the precursor sets. The properties of films were measured by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV/VIS/NIR spectrophotometer (UV-vis), atomic force microscopy (AFM), m-line and scattering-detection method. The films from GLYMO and TMSPM precursors exhibit similar thickness (2.58 mu m for GLYMO, 2.51 mu m for TMSPM) and refractive index (1.5438 for GLYMO, 1.5392 for TMSPM, lambda=632.8 nm), but the film from TMSPM precursor has higher propagation loss (1.024 dB/cm, lambda=632.8 nm) than the film prepared from GLYMO (0.569 dB/cm, lambda=632.8 nm). Furthermore, the film prepared from TMSPM is easy to be opaque and cracks during coating whereas the same phenomenon was not found for the film prepared with GLYMO. It is confirmed that GLYMO is a better precursor than TMSPM for waveguide film preparation. (C) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Tellurite glass is proposed as a host for broadband erbium-doped fiber amplifiers because of their excellent optical and chemical properties. A new single mode Er3+/Yb3+ codoped tellurite fiber with D-shape cladding geometry is fabricated in this work. When pumped at 980 nm, a broad erbium amplified spontaneous emission (ASE) nearly 100 nm in the wavelength range of 1450-1650 ran around 1.53 mu m is observed. It was found that the emission spectrum from erbium in tellurite glass fibers is almost twice as broad as the corresponding spectrum in tellurite bulk glass. The changes in ASE with regard to fiber lengths and pumping power were measured and discussed. The output of about 2.3 mW from Er3+/Yb3+ codoped tellurite fiber ASE source is obtained under the pump power of 700 mW. The broad 1.53 mu m emission of Er3+ in Er3+/Yb3+ codoped tellurite glass fiber can be used as host material for potential broadband optical amplifier and tunable fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.