456 resultados para P-RBAC
Resumo:
多线程并发是提高系统性能的常用手段,文章提出了一种用信号量的不对称P/V操作来设计多线程并发算法的新思路,这种思路适合于设计多线程同步程序以解决某些具有复杂同步语义要求的问题,而这些问题用传统的方法很难得到简洁高效的求解。为了演示这种新思路的特点和优点,笔者对几个常见问题(读写锁、排队锁和记录锁)给出了新的算法设计以及实现。实验数据表明,采用这种思路设计的算法在算法复杂度,读写速度和资源使用方面相对于传统的算法存在较大优势。
Resumo:
提出了一种基于RBAC思想对可信第三方功能进行分类并结合其他一些技术实现电子商务中匿名性与可追究性的解决方案,主要涉及三个主要过程:用户的注册控制、交易过程的控制及投诉处理过程。通过对注册用户的信息进行加密并对加密密钥进行分割保存来实现匿名性,通过对交易过程安全协议的设计及TTP功能的划分达到可追究性要求,并对可追究性的实现给予证明。
Resumo:
中国计算机学会
Resumo:
文中对基于角色访问控制(role-based access control, RBAC)研究中的两大热点——模型的建立和实现进行了较深入的研究,提出了一种新的RBAC模型——NRBAC模型.这一模型除具有全面性外,比之已有的RBAC96 模型还具有接近现实世界和形式统一的优点.针对NRBAC模型的实现,文中又提出了一种新的RBAC实现机制——基于时间戳和素数因子分解的二进制双钥-锁对( TPB-2-KLP)访问控制方案.它不仅能很好地克服已有RBAC实现机制存在的缺点,还兼备了对锁向量修改次数少和发生溢出可能性小的优点.
Resumo:
Ge-on-silicon-on-insulator p-i-n photodetectors were fabricated using an ultralow-temperature Ge buffer by ultrahigh-vacuum chemical vapor deposition. For a detector of 70-mu m diameter, the 1-dB small-signal compression power was about 110.5 mW. The 3-dB bandwidth at 3-V reverse bias was 13.4 GHz.
Resumo:
We report the passivation of two deep copper-related acceptor levels in Cu-diffused p-type GaAs by the group-I element lithium. The deep-level-transient-spectroscopy (DLTS) signals of the well-known Cu-related levels with apparent activation energies 0.15 eV and 0.40 eV disappear in Cu-diffused samples when they are diffused with Li, but can be reactivated by annealing. Photoluminescence measurements show a corresponding disappearance and reappearance of the copper-related luminescence at 1.36 eV. Also we observe with DLT'S an energy level at E(V) + 0.32 eV in the Cu-Li-diff-used samples. The level is neither present in the Cu-diffused samples before Li diffusion nor in Cu-Li-diffused samples after annealing. As the level is not observed in starting materials or solely Li-diffused samples we suggest that it is related to a Cu-Li complex.
Resumo:
We report fundamental changes of the radiative recombination in a wide range of n-type and p-type GaAs after diffusion with the group-I element Li. These optical properties are found to be a bulk property and closely related to the electrical conductivity of the samples. In the Li-doped samples the radiative recombination is characterized by emissions with excitation-dependent peak positions which shift to lower energies with increasing degree of compensation and concentration of Li. These properties are shown to be in qualitative agreement with fluctuations of the electrostatic potential in strongly compensated systems. For Li-diffusion temperatures above 700-800-degrees-C semi-insulating conditions with electrical resistivity exceeding 10(7) OMEGA cm are obtained for all conducting starting materials. In this heavy Li-doping regime, the simple model of fluctuating potentials is shown to be inadequate for explaining the. experimental observations unless the number of charged impurities is reduced through complexing with Li. For samples doped with low concentrations of Li, on the other hand, the photoluminescence properties are found to be characteristic of impurity-related emissions.
Resumo:
We report lithium passivation of the shallow acceptors Zn and Cd in p-type GaAs which we attribute to the formation of neutral Li-Zn and Li-Cd complexes. Similar to hydrogen, another group-I element, lithium strongly reduces the concentration of free holes when introduced into p-type GaAs. The passivation is inferred from an increase of both the hole mobility and the resisitivity throughout the bulk of the sample. It is observed most clearly for Li concentrations comparable to the shallow-acceptor concentration. In addition, compensation of shallow acceptors by randomly distributed donors is present in varying degree in the Li-diffused samples. Unlike hydrogenation of n-type GaAs, Li doping shows no evidence of neutralizing shallow donors in GaAs.
Resumo:
Ultraviolet and X-ray photoemission spectroscopies (UPS and XPS) have been employed to SnO2 and its interface with P-type a-SiCx:H. The HeI valence band spectra of SnO2 show that the valence band maximum (VBM) shifts from 4.7 eV to 3.6 eV below the Fermi level (E(F)), and the valence band tail (VBT) extends up to the E(F), as a consequence of H-plasma treatments. The work function difference between SnO2 and P a-SiCx:H is found to decrease from 0.98 eV to 0.15 eV, owing to the increase of the work function of the treated SnO2. The reduction of SnO2 to metallic Sn is also observed by XPS profiling, and it is found that this leads to a wider interfacial region between the treated SnO2 and the successive growth of P a-SiCx:H.