366 resultados para ZnO Microflowers
Resumo:
Arrays of vertically well-aligned ZnO nanorod-nanowall junctions have been synthesized on an undoped ZnO-coated silicon substrate by a carbothermal reduction and vapour phase transport method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the nanostructures are well-oriented with the c-axis perpendicular to the substrate. The room temperature photoluminescence (PL) spectrum of the as-prepared ZnO nanostructure reveals a dominant near-band-edge (NBE) emission peak and a weak deep level (DL) emission, which demonstrates its good optical properties. Temperature-dependent PL spectra show that both the intensity of NBE and DL emissions increased with decreasing temperature. The NBE emission at 3.27 eV is identified to originate from the radiative free exciton recombination. The possible growth mechanism of ZnO nanorod-nanowall junctions is also proposed.
Resumo:
We have successfully prepared a high-quality 2 mu m-thick GaN film with three inserted 30 nm-thick ZnO interlayers on Si (111) substrate without cracks by magnetron sputtering. The effects of the thickness and number of ZnO interlayers on the crystal quality of the GaN films were studied. It was found that the GaN crystal quality initially improved with the increase of the thickness of ZnO interlayers, but deteriorated quickly when the thickness exceeded 30 nm. Multiple ZnO interlayers were used as an effective means to further improve the crystal quality of the GaN film. By increasing the number of interlayers up to three, the cracks can be constrained to a certain extent, and the crystal quality of the GaN film greatly improved. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Vertically well-aligned ZnO nanoridge, nanorod, nanorod-nanowall junction, and nanotip arrays have been successfully synthesized on Si (100) substrates using a pulsed laser deposition prepared ZnO film as seed layer by thermal evaporation method. Experimental results illustrated that the growth of different morphologies of ZnO nanostructures was strongly dependent upon substrate temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the ZnO nanostructures were single crystals with a wurtzite structure. Compared with those of the other nanostructures, the photoluminescence (PL) spectrum of nanorod-nanowall junctions showed the largest intensity ratio of ultraviolet (UV) to yellow-green emission and the smallest full-width at half-maximum (FWHM) of the UV peak, reflecting the high optical quality and nearly defect free of crystal structure. The vertical alignment of the nanowire array on the substrate is attributed to the epitaxial growth of the nanostructures from the ZnO buffer layer. The growth mechanism was also discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Low temperature (10 K) strong anti-Stokes photoluminescence (ASPL) of ZnO microcrystal excited by low power cw 532 nm laser is reported here. Energy upconversion of 1.1 eV is obtained in our experiment with no conventional nonlinear effect. Through the study of the normal photoluminescence and temperature dependence of ASPL we conclude that the green band luminescence in ZnO is related to deep donor to valance band transition. Using the two-step two-photon absorption model, we provide a plausible mechanism leading to the ASPL phenomenon in our experiment. (c) 2006 American Institute of Physics.
Resumo:
We have investigated the temperature and pressure dependences of the copper-related green emission, which show fine structure at low temperature, from tetrapodlike ZnO microrods. The temperature dependence of the green emission energy follows the changes in the band gap from 10-200 K, but deviates from this behavior above 200 K. The pressure dependence of the copper-related green band (25 +/- 5 meV/GPa) is similar to that of the band gap of ZnO, and is larger than that reported previously for defect-related green emission in ZnO. (c) 2006 American Institute of Physics.
Resumo:
ZnO nanoparticles were synthesized in ethanolic solution using a sol-gel method. The structural and optical properties were investigated by X-ray diffraction, transmission electron microscopy, UV absorption, and photoluminescence. After annealing at 200 degrees C, the particle size is increased and the peak of defect luminescence in the visible region is changed. A yellow emission was observed in the as-prepared sample and a green emission in the annealed sample. The change of the visible emission is related to oxygen defects. Annealing in the absence of oxygen would increase oxygen vacancies. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Zinc oxide flower-like bunches were directly synthesized on indium-doped tin oxide (ITO) glass substrates through a simple chemical bath deposition process. By adjusting precursor concentration, other morphologies ( spindles and rods) were also obtained. All of them are hexagonal and single crystalline in nature and grow along the [ 0001] crystallographic direction. The possible growth mechanisms for these nano- and microcrystals were proposed. It was revealed that both the inherent highly anisotropic structure of ZnO and the precursor concentration play crucial roles in determining final morphologies of the products. In addition, vibrational properties of ZnO crystals with different morphologies were investigated by Raman spectroscopy.
Resumo:
ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.
Resumo:
Valence-band type Auger lines in Al doped and undoped ZnO were comparatively studied with the corresponding core level x-ray photoelectron spectrography (XPS) spectra as references. Then the shift trend of energy levels in the valence band was that p and p-s-d states move upwards but e and p-d states downwards with increasing Al concentration. The decreased energy of the Zn 3d state is larger than the increased energy of the 0 2p state, indicating the lowering of total energy. This may indicate that Al doping could induce the enhancement of p-d coupling in ZnO, which originates from stronger Al-O hybridization. The shifts of these states and the mechanism were confirmed by valence band XPS spectra and 0 K-edge x-ray absorption spectrography (XAS) spectra. Finally, some previously reported phenomena are explained based on the Al doping induced enhancement of p-d coupling.
Resumo:
P-doped ZnO films were deposited on n-Si substrate by radio-frequency magnetron sputtering. Hall measurements revealed that the films annealed in situ at 750 degrees C in an oxygen ambient at a pressure of 1.3x10(-3)-3.9x10(-3) Pa showed p-type behavior with a hole concentration of 2.7x10(16)-2.2x10(17) cm(-3), a mobility of 4-13 cm(2)/V s, and a resistivity of 10.4-19.3 Omega cm. Films annealed at 750 degrees C in a vacuum or in oxygen ambient at higher pressures (5.2x10(-3) and 6.5x10(-3) Pa) showed n-type behavior. Additionally, the p-ZnO/n-Si heterojunction showed a diodelike I-V characteristic. Our results indicate that P-doped p-type ZnO films can be obtained by annealing in oxygen ambient at very low pressures. (c) 2006 American Institute of Physics.
Resumo:
Sb-doped and undoped ZnO thin films were deposited on Si (100) substrates by radio frequency (RF) magnetron sputtering. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that all the films had polycrystalline wurtzite structure and c-axis preferred orientation. Room temperature Hall measurements showed that the as-grown films were n-type and conducting (rho similar to 1-10 Omega cm). Annealing in a nitrogen ambient at 400 degrees C for 1 h made both samples highly resistive (rho > 10(3) Omega cm). Increasing the annealing temperature up to 800 C, the resistivity of the ttndoped ZnO film decreased gradually, but it increased for the Sb-doped ZnO film. In the end, the Sb-doped ZnO film annealed at 800 C became semi-insulating with a resistivity of 10(4)Omega cm. In addition, the effects of annealing treatment and Sb-doping on the structural and electrical properties are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Synthesis and temperature-dependent near-band-edge emission of chain-like Mg-doped ZnO nanoparticles
Resumo:
Chain-like Mg-doped ZnO nanoparticles were prepared using a wet chemical method combined with subsequent heat treatment. The blueshifted near-band-edge emission of the doped ZnO sample with respect to the undoped one was investigated by temperature-dependent photoluminescence. Based on the energy shift of the free-exciton transition, a band gap enlargement of similar to 83 meV was estimated, which seems to result in the equivalent shift of the bound-exciton transition. At 50 K, the transformation from the donor-acceptor-pair to free-to-acceptor emissions was observed for both the undoped and doped samples. The results show that Mg doping leads to the decrease of the acceptor binding energy. (c) 2006 American Institute of Physics.
Resumo:
The recombination property of nitrogen (N)-related acceptor-bound states in ZnO has been investigated by photoluminescence (PL), time-resolved PL, and selective PL. Several possible recombination processes were discussed by analyzing the relaxation and recombination properties under large Coulomb interaction. It is strongly suggested that bound exciton emission dominates the recombination process related to the N acceptor. The recombination lifetime is 750 ps and the binding energy is 67 meV for N-acceptor-bound exciton at low temperature. (c) 2006 American Institute of Physics.
Resumo:
The valence band structures of Al-N-codoped [ZnO:(Al, N)] and N-doped (ZnO:N) ZnO films were studied by normal and soft x-ray photoelectron spectroscopy. The valence-band maximum of ZnO:(Al, N) shifts up to Fermi energy level by about 300 meV compared with that of ZnO:N. Such a shift can be attributed to the existence of a kind of Al-N in ZnO:(Al, N), as supported by core level XPS spectra and comparison of modified Auger parameters. Al-N increased the relative quantity of Zn-N in ZnO:(Al, N), while N-N decreased that of Zn-N in ZnO:N. (c) 2006 American Institute of Physics.
Resumo:
High quality ZnO films have been successfully grown on a Si (100) substrate by metal organic chemical vapour deposition with a gamma-Al2O3 buffer. The crystal structure, surface morphology and optical properties of the ZnO films were characterized by x-ray diffraction, Raman spectroscopy, atomic force microscopy and photoluminescence (PL) spectroscopy. The propel-ties of the films with the Al2O3 buffer were improved in comparison with those of as-grown ZnO films. It is shown that the ZnO films with the gamma-Al2O3 buffer grown on Si (100) substrates have a highly-preferential c-axis (0002) orientation, a narrow (0002) peak, smooth surface morphology and better PL spectral properties. This demonstrates that the use of gamma-Al2O3/Si as a ZnO substrate is beneficial for reducing the residual stress for further growth of ZnO films, compared with the growth on bulk Si substrates.