199 resultados para QUASI-CRYSTALLINE ALLOY
Resumo:
国家自然科学基金
Resumo:
集成光电子学国家重点实验室基金,国家863计划,国家自然科学基金,中科院项目
Resumo:
国家863计划,国家自然科学基金
Resumo:
国家863计划,国家自然科学基金
Resumo:
The effect of thermal annealing on the Raman spectrum of Si0.33Ge0.67 alloy grown on Si (100) by molecular beam epitaxy is investigated in the temperature range of 550-800 degrees C. For annealing below 700 degrees C, interdiffusion at the interface is negligible and the residual strain plays the dominant role in the Raman shift. The strain-shift coefficients for Si-Ge and Ge-Ge phonon modes are determined to be 915 +/- 215 cm(-1) and 732 +/- 117 cm(-1), respectively. For higher temperature annealing, interdiffusion is significant and strongly affects the Raman shift and the spectral shape.
Resumo:
The photoluminescence from ZnS1-xTex alloy with 0 < x < 0.3 was investigated under hydrostatic pressure up to 7 GPa. Two peaks were observed in the alloys with x < 0.01, which are related to excitons bound to isolated Te isoelectronic impurities (Te-1 centers) and Te pairs (Te-2 centers), respectively. Only the Te-2 related emissions were observed in the alloys with 0.01 < x < 0.03. The emissions in the alloys with 0.03 < x < 0.3 are attributed to the excitons bound to the Te-n (n greater than or equal to 3) cluster centers. The pressure coefficient of the Te-1 related peak is 89(4) meV/GPa, about 40% larger than that of the band gap of ZnS. On the other hand, the pressure coefficient of the Te-2 related emissions is only 52(4) meV/GPa, about 15% smaller than that of the ZnS band gap. A simple Koster-Slater model has been used to explain the different pressure behavior of the Te-1 and Te-2 centers. The pressure coefficient of the Te-3 centers is 62(2) meV/GPa. Then the pressure coefficients of the Te-n centers decrease rapidly with further increasing Te composition.
Resumo:
We have developed a low-temperature (LT) growth technique. Even with Ge fraction x upto 90%, the total thickness of fully relaxed GexSi1-x buffers can he reduced to 1.7 mu m with dislocation density lower than 5 x 10(6) cm(-2). The surface roughness is no more than 6 nm. The strain relaxation is quite inhomogeneous From the beginning. Stacking faults generate and form the mismatch dislocations in the interface of GeSi/LT-Si. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Double-crystal X-ray diffraction and I-V characterization have been carried out on the GSMBE grown SiGe/Si p-n heterojunction materials. Results show that the SiGe alloys crystalline quality and the misfit dislocations are critical influences on the reverse leakage current. The crystal perfection and/or the degree of metastability of the Sice alloys have been estimated in terms of the model proposed by Tsao with the experimental results. High-quality p-n heterojunction diodes can be obtained by optimizing the SiGe alloy structures, which limit the alloys in the metastable states. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, the mechanism of detonation to quasi-detonation transition was discussed, a new physical model to simulate quasi-detonation was proposed, and one-dimensional theoretical and numerical simulation was conducted. This study firstly demonstrates that the quasi-detonation is of thermal choking. If the conditions of thermal choking are created by some disturbances, the supersonic flow is then unable to accept additional thermal energy, and the CJ detonation becomes the unstable quasi-detonation precipitately. The kinetic energy loss caused by this transition process is firstly considered in this new physical model. The numerical results are in good agreement with previous experimental observations qualitatively, which demonstrates that the quasi-detonation model is physically correct and the study are fundamentally important for detonation and supersonic combustion research.
Resumo:
Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes.