450 resultados para Laser beam characterization
Resumo:
We report a 1.5-mu m InGaAs/GaAs quantum well laser diode grown by molecular beam epitaxy on InGaAs metamorphic buffers. At 150 K, for a 1500 x 10 mu m(2) ridge waveguide laser, the lasing wavelength is centred at 1.508 mu m and the threshold current density is 667 A/cm(2) under pulsed operation. The pulsed lasers can operate up to 286 K.
Resumo:
Starting from the growth of high-quality 1.3 mu m GaInNAs/GaAs quantum well (QW), the QW emission wavelength has been extended up to 1.55 mu m by a combination of lowering growth rate, using GaNAs barriers and incorporating some amount of Sb. The photoluminescence properties of 1.5 mu m range GaInNAsSb/GaNAs QWs are quite comparable to the 1.3 mu m QWs, revealing positive effect of Sb on improving the optical quality of the QWs. A 1.59 mu m lasing of a GaInNAsSb/GaNAs single-QW laser diode is obtained under continuous current injection at room temperature. The threshold current density is 2.6 kA/cm(2) with as-cleaved facet mirrors. (c) 2005 American Institute of Physics.
Resumo:
An elaborate analysis of the parasitic network of high-speed through-hole packaging (TO)-type laser modules is presented using a small-signal equivalent circuit model. The intrinsic laser diode is obtained using the optical modulation technique, and is embedded into the model as a separate component. Three step-by-step measurements are made for determining the packaging parasitic network, including the test fixture, TO header, submount, bonding wire, and parasitics of the laser chip. A good agreement between simulated and measured results confirms the validation and accuracy of the characterization procedures. Furthermore, several key parasitic elements are found based on the simulation of the high-frequency responses of the packaged devices. It is expected that the 3-dB bandwidth of 12 GHz or more of the low-cost TO packaged laser module may be achieved using the proposed optimization method.
Resumo:
We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64 pf It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.
Resumo:
The growth and characterization of quantum cascade (QC) lasers based on InGaAs/InAlAs material system are investigated. Pronounced intersubband absorption from stacked active region of QC structure is used to monitor the wavelength of QC laser and disclose the material quality. The precise control of the epilayer thickness and the good quality of interfaces are demonstrated by the abundant narrow satellite peaks of X-ray diffraction. Laser action in quasi-continuous wave operation is achieved at lambda approximate to 5.1-5.2 mum up to 300 K. For 10 x 800 mum(2) laser device, peak output power of similar to7.2 mW and threshold current density of 3 kA/cm(2) at room temperature are obtained. For some devices, if keep the peak output powers at the similar to2 mW level, quasi-continuous wave operation at room temperature persists more than 1 h are recorded. (Q) (C) 2001 Elsevier Science Ltd. All rights reserved.
Growth and characterization of strained superlattices delta-GaNxAs1-x/GaAs by molecular beam epitaxy
Resumo:
A series of superlattices delta-GaNxAs1-x/GaAs were grown by a DC plasma-N-2-assisted molecular beam epitaxy. The evolution of the surface reconstruction during the growth has been studied with the use of in situ reflection high-energy electron diffraction. The superlattices have been characterized by high-resolution X-ray diffraction measurements. Distinct satellite peaks indicate that the superlattices are of good quality. The N compositions in strained GaNxAs1-x monolayers are obtained from the dynamical simulations of the measured X-ray diffraction patterns. The periodicity fluctuations of N composition are obtained from a kinematical method dependent on the broadening of the satellite peaks of the X-ray diffraction. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Structural properties of SiGe/Si single wells are studied by double-crystal X-ray diffraction. Four SiGe/Si single wells have been grown on Si (0 0 1) at 750 degrees C by disilane and solid-Ge molecular beam epitaxy with varied disilane cracking temperature. Using dynamic theory, together with kinematic theory and the specific growth procedure adopted, structural parameters in the multilayer structure are determined precisely. The results are compared with those obtained from PL and XTEM as well as AES measurements. It is found that disilane adsorption is dependent on cracking temperature as well as Ge incorporation. Disilane adsorption is increased by cracking disilane while it decreased with Ge incorporation (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Strain relaxation in the As ion implanted Si0.57Ge0.43 epilayers was studied by double-crystal x-ray diffractometry and transmission electron microscopy, and was compared to that in the nonimplanted Si0.57Ge0.43 epilayers. Experimental results show that after rapid thermal annealing (RTA) the x-ray linewidth of the As+-implanted Si0.57Ge0.43 epilayers is narrower than that of the nonimplanted epilayers, and than that of the partially relaxed as-grown samples, which is due primarily to low density of misfit dislocations in the As+-implanted SiGe epilayers. RTA at higher than 950 degrees C results in the formation of misfit dislocations for the nonimplanted structures, and of combinations of dislocations and precipitates (tentatively identified as GeAs) for the As+-implanted epilayers. The results mean that the strain relaxation mechanism of the As+-implanted Si1-xGex epilayers may be different from that of the nonimplanted Si1-xGex epilayers. (C) 1998 American Institute of Physics.
Resumo:
Various high-speed laser modules are fabricated by TO-Packaged processes, such as FP laser modules, DFB laser modules, and VCSEL modules. Furthermore,, the resonance among the circuit elements provides an approach to compensating the TO packaging parasitics, and improving the frequency response of the devices. The detailed equivalent circuit model is established to investigate both the laser diode and packaging comprehensively. The small-signal modulation bandwidths of the TO packaged FP laser, DFB laser and the VCSEL modules are more than 10, 9.7 and 8 GHz, respectively.
Resumo:
An ultra-wide-band frequency response measurement system for optoelectronic devices has been established using the optical heterodyne method utilizing a tunable laser and a wavelenath-fixed distributed feedback laser. By controlling the laser diode cavity length, the beat frequency is swept from DC to hundreds GHz. An outstanding advantage is that this measurement system does not need any high-speed light modulation source and additional calibration. In this measurement, two types of different O/E receivers have been tested. and 3 dB bandwidths measured by this system were 14.4GHz and 40GHz, respectively. The comparisons between experimental data and that from manufacturer show that this method is accurate and easy to carry out.
Resumo:
We demonstrated oxide-confined 850-nm vertical-cavity surface-emitting lasers (VCSELs) with a two-dimensional petal-shaped holey structure composed of several annular-sector-shaped holes. Four types of devices with different hole numbers were designed and fabricated. The measured results showed that the larger hole number was beneficial to purifying the lasing mode, and realizing the single-mode operation. The side mode suppression ratio (SMSR) exceeded 30 dB throughout the entire drive current. Mode selective loss mechanism was used to explain the single-mode characteristic. The single-mode devices possessed good beam profiles, and the lowest divergence angle was as narrow as 3.2 degrees (full width at half maximum), attributed to the graded index profile and the shallow etching in the top distributed Bragg reflector (DBR).
Resumo:
We report a LD side-pumped fundamental-mode (Mx(2) = 1.35 and My(2) = 1.27) passive Q-switched and mode-locked Nd:YAG laser based on a semiconductor saturable absorber mirror (SESAM). At a pump current of 12.5 A, the average output power of 5.68 W with 80 kHz repetition rate and 2 mu s pulse width of the Q-switched envelope was generated. The repetition rate of the mode-locked pulse within the Q-switched envelope of 88 MHz was achieved.