288 resultados para Characteristics of Corporate Network
Resumo:
The influence of heterostructure quality on transport and optical properties of GaAs/AlGaAs single quantum wells with different qualities was studied. In a conventional sample-A, the transport scattering time and the quantum scattering time are small and close to each other. The interface roughness scattering is a dominant scattering mechanism. From comparison between theory and experiment, interface roughness with fluctuation height 2.5 Angstrom and the lateral size of 50-70 Angstrom were estimated. For samples introducing superlattices instead of AlGaAs layers or by utilizing growth interruption, both the transport and PL measurements showed that interfaces were rather smooth in the samples. The two scattering times are much longer. The interface roughness scattering is relegated to an unimportant position. Results demonstrated that it is important to control the formation of heterostructures in order to improve the interface quality.
OPTICAL CHARACTERISTICS OF GAAS/ALGAAS RIDGE-QUANTUM-WELL-WIRES GROWN BY MBE ON NONPLANAR SUBSTRATES
Resumo:
With conventional photolithography and wet chemical etching, we have realized GaAs/AlGaAs buried ridge-quantum-well-wires (RQWWs) with vertically stacked wires in lateral arrays promising for device application, which were grown in situ by a single-step molecular beam epitaxy growth and formed at the ridge tops of mesas on nonplanar substrates. Confocal photoluminescence (CPL) and polarization-dependent photoreflectance (PR) are applied to study optical characteristics of RQWWs. Lateral bandgap modulation due to lateral variation of QW layer thickness is demonstrated not only by CPL but also by PR. As one evidence for RQWWs, a large blue shift is observed at the energy level positions for electronic transitions corresponding to quantum wells (QWs) at the ridge tops of mesas compared with those corresponding to QWs on nonpatterned areas of the same sample. The blue shift is in contradiction with the fact that the GaAs QW layers at the tops of the mesas are thicker than those on nonpatterned areas. The other evidence for RQWWs, optical anisotropy is provided by the polarization-dependent PR, which results from lateral quantum size effect existing at the tops of the mesas.
Resumo:
We present a model for electrons confined in narrow conducting channels by a parabolic well under moderate to high magnetic fields which takes into account a cutoff in the filling of the subbands. Such a cutoff gives rise to energy-separated subbands and a two-dimensional (2D) like subband depopulation, resulting in a relation between sublevel index n and inverse magnetic field B-1 such that in the high-field regime it changes over to the well-known 2D form as expected, and in the moderate field regime it shows pronounced deviation from linearity. This agrees well with the experimental results. The linear region of the n-B-1 experimental plot is believed to arise from the two dimensionality of the system. Calculations show that no resolvable 1D sublevel exists in the 0.5-mu-m-wide wire at very small magnetic fields (including zero field), which agrees qualitatively with the experimental results found in other wires that the Hall resistance, R(H), approaches its classical value B/n(e)e in this region and R(H) = 0 at B = 0, where n(e) is the electron concentration. In this model the linear and nonlinear regions in the experimental n-B-1 plot are used to extract the characteristic frequency omega-0, and the effective 2D electron concentration N(e)2D, respectively.