313 resultados para Web2.0
Resumo:
Magnetic nanoparticles of Ni-doped cobalt ferrite [Co1-xNixFe2O4(0 <= x <= 1)] synthesized by coprecipitation route have been studied as a function of doping concentration (x) and particle size. The size of the particles as determined by X-ray diffractometer (XRD) and transmission electron microscope (TEM) analyses was found in the range 12-48 nm. The coercivity (H-C) and saturation magnetization (M-S) showed a decreasing behavior with increasing Ni concentration. M-S of all the samples annealed at 600 degrees C lies in the range 65.8-13.7 emu/gm. Field-cooled (FC) studies of the samples showed horizontal shift (exchange bias) and vertical shift in the magnetization loop. Strong decrease in exchange bias (H-b) and vertical shift (delta M) was found for low Ni concentrations while negligible decrease was found at higher concentrations. The presence of exchange bias in the low Ni-concentration region has been explained with reference to the interface spins interaction between a surface region (with structural and spin disorder) and a ferrimagnetic core region. M(T) graphs of the samples showed a decreasing trend of blocking temperature (T-b) with increasing Ni concentration. The decrease of T-b with increasing Ni concentration has been attributed to the lower anisotropy energy of Ni+2 ions as compared to Co+2 that increases the probability of the jump across the anisotropy barrier which in turn decreases the blocking temperature of the system.
Resumo:
The proton and neutron S-1(0), pairing gaps and their isospin dependence in isospin asymmetric nuclear matter have been studied by the isospin dependent Brueckner-Hartree-Fock approach and the BCS theory. We have focused on investigating and discussing the effect of three-body force. The calculated results indicate that as the isospin asymmetry increases, the density range of the S-1(0) neutron superfluidity is narrowed slightly and the maximum value of the neutron pairing gap increases 9 while the density domain for the proton superfluidity enlarges rapidly and the peak value of the proton gap decreases remarkably. The three-body force turns out to affect only weakly the neutron S-1(0) superfluidity and its isospin dependence, i. e., it leads to a small reduction of the neutron S-1(0) paring gap. However, the three-body force not only reduces largely the strength of the proton S-1(0) gaps at high densities in highly asymmetric nuclear matter but also suppresses strongly the density domain for the proton S-1(0) superfluidity phase.
Resumo:
We investigate the S-1(0) neutron and proton superfluidity in isospin-asymmetric nuclear matter. We have concentrated on the isospin dependence of the pairing gaps and the effect of a microscopic three-body force. It is found that as the isospin asymmetry goes higher, the neutron S-1(0) superfluid phase shrinks gradually to a smaller density domain, whereas the proton one extends rapidly to a much wider density domain. The three-body force turns out to weaken the neutron S-1(0) superfluidity slightly, but it suppresses strongly the proton S-1(0) superfluidity at high densities in nuclear matter with large isospin asymmetry.
Resumo:
The foil-excited the spectrum of highly stripped titanium ions between 12-40 nm has been studied. Titanium ions of 80 and 120 MeV were provided by the HI-13 tandem accelerator at the China Institute of Atomic Energy. GIM-957 XUV-VUV monochromator was refocused to get highly-resolved spectra. Our experimental results and the published spectral data of laser-produced plasma show agreement in nearly all cases within +/- 0.03 nm. The spectra contained some weak or strong lines previously unclassified. These spectral lines mainly belong to 2s2p(2) for TiXVIII, 2p(3) for TiXVIII, 2s2p(3) for TiXVII, 2p(6)4p for Ti XII and 2p(6)3d for Ti XII transitions.
Resumo:
Spectra for Delta n = 0 transitions of the type 2s(2)2p(k)-2s2p(k+1) or 2s2p(k)-2p(k+1) from highly ionized sulfur produced in beam-foil excitation are investigated and compared to similar spectra measured with other types of light sources. In the experiment, fifty lines have been identified, of which eleven lines are new and accurately measured. Analysis of spectra was based on comparisons with other experimental results and calculated values.
Resumo:
We report a measurement of high-p(T) inclusive pi(0), eta, and direct photon production in p + p and d + Au collisions at root s(NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi(0) -> gamma gamma were detected in the barrel electromagnetic calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross-section measurement by STAR is also presented; the signal was extracted statistically by subtracting the pi(0), eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading-order perturbative QCD calculations.
Resumo:
A new measurement of subthreshold K*(892)(0) and K-0 production is presented. The experimental data complete the measurement of strange particles produced in Al + Al collisions at 1.9A GeV measured with the FOPI detector at SIS at GSI (Darmstadt). The K*(892)(0)/K-0 yield ratio is found to be 0.0315 +/- 0.006(stat.) +/- 0.012(syst.) and is in good agreement with the transport model prediction. These measurements provide information on the in-medium cross section of K+-pi(-) fusion, which is the dominant process in subthreshold K*(892)(0) production.
Resumo:
In this paper, we explored the characteristics of the interference effects between perturbative states in hyperfine induced 2s2p P-3(0), P-3(2) -> 2s(2) S-1(0) transitions of Be-like ions. It was found that the interference effects non-monotonically change with increasing atomic number Z in these two transitions. The strongest interference effect is near Z = 9 for 2s2p P-3(0), -> 2s(2) (1)S(0)transition and near Z = 7 for the other.
Resumo:
Within the framework of a nonlinear chiral Lagrangian we explore the nontrivial nature of f(0)(600) and f(0)(1370) in terms of quarkonium, tetraquark and gluonium components. The mass constraints are obtained and the strong and radiative partial widths are calculated to demonstrate and discriminate these components. The static properties of f(0)(1500) and glueball are also studied. Our results are confronted with the experimental and theoretical data available as well as the upcoming measurements. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
直接流是研究重离子碰撞动力学演变和压缩形成的高密核物质性质很好的探针,本论文系统地研究了0.4、0.8和1.16A GeV的Ni+Ni和Pb+Pb碰撞中的直接流。实验是在德国重离子研究中心(GSI)的FOPI探测装置上完成的。论文中,简单总结了中高能区重离子碰撞的现状和描述集体流的主要理论模型,介绍了FOPI探测系统,给出了详细的实验数据分析过程,对所得到的物理结果进行了讨论。本论文工作的重点如下:基于FOPI系统的实验数据,发展了一套质量相关(Z=1离子)的直接流的提取方法。提取了各碰撞系统出射P、D和T粒子在不同碰撞中心度下的微分直接流和积分直接流。研究了P、D和T的直接流对碰撞中心度、系统尺寸和碰撞能量的依赖性,以及对核物质状态方程的敏感性。结果表明:直接流敏感地依赖于碰撞中心度,近中心碰撞具有更强直接流信号;对于轻重两种系统,用常用的AP1/3+AT1/3系数对积分直接流进行了标度,观察到一定的标度性,但不能完全标度;通过研究直接流对碰撞能量的依赖性发现,在0.4-1.2A GeV能区内,随能量升高,直接流在已经达到了饱和,并开始下降,并且P、D和T的变化趋势相同。实验数据与输运模型IQMD计算比较发现,直接流的变化趋势和最大密度变化趋势相同,说明直接流是核物质压缩程度的一个良好探针。计算得到的P、D和T微分和积分的V1值表明,与质量相关的直接流,无论是微分值还是积分值都敏感依赖于模型中EoS参数。比较发现,不同碰撞能量下,重的Pb+Pb系统的数据和软的EoS符合很好,说明核物质不可压缩系数在210 MeV附近,这与文献中的结果相吻合,说明与质量相关的直接流是EoS的敏感探针。对于轻Ni+Ni系统,目前的IQMD还不能重现数据,但其趋向于硬的EoS,需要发展描述碰撞过程更为精细的理论模型。数据整体趋势表明,随者系统变重,中子比例的增加,EoS变软,难以给出同一组IQMD参数来同时解释全部的实验数据。对于所研究的碰撞系统,比较中心快度区斜率行为时发现,P、D和T的直接流与出射粒子质量数呈线性关系,并且出射粒子的积分直接流可以很好的用常数(A+1)/2进行标度。如果出射粒子的直接流用IQMD计算的核阻止进行归一,归一后的直接流与碰撞能量成正比。这证明核阻止与直接流有线性关联,反映了核阻止对于碰撞中核物质达到的最高密度起决定性的作用。论文工作的另一部分是完成了FOPI探测装置中飞行时间探测器的升级工作。研制了新型的玻璃MMRPC,完成了性能的批量测试,并研究了该探测器的高计数率行为。测量结果显示,在实验计数率(0.1 kHz/cm2)条件下,MMRPC时间分辨达到75 ps,探测效率达到98%。当计数率达到3-5 kHz/cm2时,时间分辨和探测效率降至约110 ps和75%。高计数率探测效率变差的幅度可以用DC模型进行解释,然而时间分辨的变化幅度用DC模型难以解释