252 resultados para SEMICONDUCTOR-LASER


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have designed and fabricated the visible vertical-cavity surface-emitting lasers (VCSEL's) by using metalorganic vapor phase epitaxy (MOVPE). We use the 8 lambda optical cavities with 3 quantum wells in AlGaInP/AlGaAs red VCSEL's to reduce the drift leakage current and enhance the model gain in AlGaInP active region. The structure has a p-type stack with 36 DBR pairs on the top and an n-type with 55-1/2 pairs on the bottom. Using micro-area reflectance spectrum, we try to get a better concordance between the center wavelength of DBR and the emitting wavelength of the active region. We used a component graded layer of 0.05 lambda thick (x = 0.5 similar to 0.9) at the p-type DBR AlGaAs/AlAs interface to reduce the resistance of p-type DBR. We use selective oxidation to define the current injection path. Because the oxidation rate of a thick layer is faster than a thinner one, we grown a thick AlAs layer close to the active region. In this way, we got a smaller active region for efficient confinement of injected carriers (the aperture area is 3 x 3 mu m) to reduce the threshold and, at the same time, a bigger conductive area in the DBR layers to reduce the resistance. We employ Zn doping on the p-side of the junction to improve hole injection and control the Zn dopant diffusion to get proper p-i-n junction. At room temperature, pulse operation of the laser has been achieved with the low threshold current of 0.8mA; the wavelength is about 670nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single mode 650nm AlGaInP quantum well laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) was reported in this paper. Selected buried rigewaveguid were applied for single mode operation especially for DVD use. The operating temperature over 90 degree at CW output power 5 mW was achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper reports a method of depositing SiO2, SiNx, a:Si, Si3N4 and SiOxNy dielectric thin films by electron cyclotron resonance plasma chemical vapor deposition (ECR CVD) on InP, InGaAs and other compound semiconductor optoelectronic devices,and give a technology of depositing dielectric thin films and optical coatings by ECR CVD on Laser's Bars. The experiment results show the dielectric thin films and optical coatings are stable at thermomechanical property,optical properties and the other properties. In addition, the dielectric thin film deposition that there is low leakage current is reported for using as diffusion and ion implatation masks in the paper. In the finally, the dielectric film refractive index can be accurately controlled by the N-2/O-2/Ar gas flow rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on an 880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on a semiconductor saturable absorber mirror (SESAM) for the first time. When the incident pump power was 16 W, 4.76 W average output power of continuous-wave mode-locked laser with an optical-to-optical conversion efficiency of 30% was achieved. The repetition rate of mode-locked pulse was 80 MHz with 25 ps pulse width. The maximum pulse energy and peak power were 60 nJ and 2.4 kW, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an LD side-pumped continuous-wave passive mode-locked Nd:YAG laser with a Z-type folded cavity based on a semiconductor saturable absorber mirror (SESAM). The average output power 2.95 W of mode-locked laser with electro-optical conversion efficiency of 1.3% and high beam quality (M-x(2) = 1.25 and M-y(2) = 1.22) is achieved. The repetition rate of mode-locked pulse of 88 MHz with pulse energy of 34 nJ is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a simple approach to generate a high quality 10 GHz 1.9 ps optical pulse train using a semiconductor optical amplifier and silica-based highly nonlinear fiber. An optical pulse generator based on our proposed scheme is easy to set up with commercially available optical components. A 10 GHz, 1.9 ps optical pulse train is obtained with timing jitter as low as 60 fs over the frequency range 10 Hz-1 MHz. With a wavelength tunable CW laser, a wide wavelength tunable span can be achieved over the entire C band. The proposed optical pulse generator also can operate at different repetition rates from 3 to 10 GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 mu m wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental setup and the procedure for the laser resonant ionization mass spectrometry (RIMS) have been described. Both an optical spectrum and a mass spectum have been shown. The detection limit that can be reached by using this procedure has been estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical behaviors and frequency characteristics of an active mode-locked laser with a quarter wave plate (QWP) are numerically studied by using a set pf vectorial laser equation. Like a polarization self-modulated laser, a frequency shift of half the cavity mode spacing exists between the eigen-modes in the two neutral axes of QWP. Within the active medium, the symmetric gain and cavity structure maintain the pulse's circular polarization with left-hand and right-hand in turn for each round trip. Once the left-hand or right-hand circularly polarized pulse passes through QWP, its polarization is linear and the polarized direction is in one of the directions of i45o with respect to the neutral axes of QWP. The output components in the directions of i45" from the mirror close to QWP are all linearly polarized with a period of twice the round-trip time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polarization self-modulation effect in a free oscillated Nd:YAG laser is investigated after a quarter wave plate is introduced independently in the two positions of the cavity. As described in the previous experiments, the intensity components in the orthogonal directions are modulated with a period of the round-trip time or twice. Different pulse shapes reveal that the seed field from the spontaneous emission is not uniform and seems to be stochastic for each pulse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel composite coating was synthesized by laser alloying of zirconium nanoparticles on an austenite stainless steel surface using a pulsed Nd:YAG laser. The coating contained duplex microstructures comprising an amorphous phase and an austenitic matrix. A discontinuous zirconium-containing region formed at a depth of 16 mum below the surface. The amorphous phase was present in the zirconium-rich region, with the composition of zirconium ranging from 7.8 to 14.5 at. pet. The formation of the amorphous phase was attributed to the zirconium addition. The hardness, corrosion, and wear-corrosion resistance of the irradiated coating were evidently enhanced compared to those of the stainless steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization. The enthalpy method was applied to solve this two-phase axisymmetrical melting problem Computational results of temperature fields were obtained, which provide useful information to practical laser treatment processing. The validity of enthalpy method in solving such problems is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new in situ method was realized by one step laser cladding to produce Ni-base alloy composite coating reinforced by in situ reacted and gradiently distributed TiCp particles. The submicron TiCp particles were formed and uniformly distributed because of the in situ reaction and trapping effect under the rapid solidification condition. And, TiCp particles were of gradient distribution on a macro scale and their volume fraction increased from 1.86% at the layer/substrate interface to a maximum 38.4% at the surface of the layer. Furthermore, the in situ generated TiCp/gamma-Ni interfaces were free from deleterious surface reactions. Additionally, the clad coating also revealed a high microhardness of gradient variation with the layer depth and the superior abrasive wear resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To accomplish laser-induced thermal loading simulation tests for pistons,the Gaussian beam was modulated into multi-circular beam with specific intensity distribution.A reverse method was proposed to design the intensity distribution for the laser-induced thermal loading based on finite element(FE) analysis.Firstly,the FE model is improved by alternating parameters of boundary conditions and thermal-physical properties of piston material in a reasonable range,therefore it can simulate the experimental resul...