326 resultados para QUANTUM-DOT


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate theoretically the electron-hole pair states in CdTe quantum dot (QD) containing a single Mn2+ ion by the magneto-optical spectrum tuned by the electric field. It is shown that the electric field does not only tune the spin splitting via the sp-d exchange interaction but also affect significantly the anticrossing behavior in the photoluminescence spectrum. This anticrossing is caused by the s-d exchange interaction and/or the hole mixing effect, which depends sensitively on the shape of the QD. (C) 2008 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, how the dots' radius, At concentration and external electric field affect the single electron energy states in GaAs/AlxGa1-xAs spherical quantum dots are discussed in detail. Furthermore, the modification of the energy states is calculated when the difference in effective electron mass in GaAs and AlxGa1-xAs are considered. In addition, both the analytical method and the plane wave method are used in calculation and the results are compared, showing that they are in good agreement with each other. The results and methods can provide useful information for the future research and potential applications of quantum dots.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We grow In-GaAs quantum dot (QD) at low growth rate with 70 times insertion of growth interruption in MBE system. It is found that because of the extreme growth condition, QDs exhibit a thick wetting layer, large QD height value and special surface morphology which is attributed to the In segregation effect. Temperature dependence of photoluminescence measurement shows that this kind of QDs has a good thermal stability which is explained in terms of a "group coupling" model put forward by us. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Strongly vertically coupled InAs/GaAs quantum dots (QDs) with modulation doping are investigated, and polarization dependence of two-color absorptions was observed. Analysis of photoluminescence (PL) and absorption spectra shows that s-polarized absorptions at. 10.0 and 13.4 mu m, stem from the first excited state E-1 and the second excited state E-2 in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively, whereas p-polarized absorptions at 10.0 and 8.2 mu m stem from the first excited state E-1 and the ground E-g in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively. These measurements illustrate that transitions from excited states are more sensitive to normal incidence, which are very important in designing QD infrared detector. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hole-mediated ferromagnetism in (In,Mn)As quantum dots is investigated using the k center dot p method and the mean field model. It is found that the (In,Mn)As quantum dot can be ferromagnetic at room temperature when there is one hole in the dot. For the spherical quantum dots, the Curie temperature decreases as the diameter increases, and increases as the effective composition of magnetic ions increases. It is interesting to find that the (In,Mn)As oblate quantum dot has highly anisotropic Zeeman splitting and ferromagnetism due to the spin-orbit coupling effect, which can be used as an uniaxial spin amplifier. (c) 2008 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Self-assembled InAs/AlAs quantum dots embedded in a resonant tunneling diode device structure are grown by molecular beam epitaxy. Through the selective etching in a C6H8O7 center dot H2O-K3C6H5O7 center dot H2O-H2O2 buffer solution, 310 nm GaAs capping layers are removed and the InAs/AlAs quantum dots are observed by field-emission scanning electron microscopy. It is shown that as-fabricated quantum dots have a diameter of several tens of nanometers and a density of 10(10) cm(-2) order. The images taken by this means are comparable or slightly better than those of transmission electron microscopy. The undercut of the InAs/AlAs layer near the edges of mesas is detected and that verifies the reliability of the quantum dot images. The inhomogeneous oxidation of the upper AlAs barrier in H2O2 is also observed. By comparing the morphologies of the mesa edge adjacent regions and the rest areas of the sample, it is concluded that the physicochemical reaction introduced in this letter is diffusion limited.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots were prepared on GaAS(100)) substrate in a solid source molecular beam epitaxy system The distribution and topographic images of uncapped dots were studied by atomic force microscope. The statistical result shows that the quantum dots are bimodal distribution. The photoluminescence spectrum results shows that the intensity of small size quantum dots dominated, which may be due to: (1) the state density of large quantum dots lower than that of small quantum dots; (2) the carriers capture rate of large size quantum dots is small relative to that of small ones; (3) there is a large strain barrier between large quantum dots and capping layer, and the large strain is likely to produce the defect and dislocation, resulting in a probability carriers transferring from large quantum dots to small dots that is very small with temperature increasing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electron transport through two parallel quantum dots is a kind of solid-state realization of double path interference We demonstrate that the inter-clot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A bilayer stacked InAs/GaAs quantum dot structure grown by molecular beam epitaxy on an In0.05Ga0.95As metamorphic buffer is investigated. By introducing a InGaAs Sb cover layer on the upper InAs quantum dots (QDs) layers, the emission wavelength of the QDs is extended successfully to 1.533 mu m at room temperature, and the density of the QDs is in the range of 4 x 10(9) -8 x 10(9) cm(-2). Strong photoluminescence (PL) intensity with a full width at half maximum of 28.6 meV of the PL spectrum shows good optical quality of the bilayer QDs. The growth of bilayer QDs on metamorphic buffers offers a useful way to extend the wavelengths of GaAs-based materials for potential applications in optoelectronic and quantum functional devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Both the peak position and linewidth in the photoluminescence spectrum of the InAs/GaAs quantum dots usually vary in an anomalous way with increasing temperature. Such anomalous optical behaviour is eliminated by inserting an In0.2Ga0.8As quantum well below the quantum dot layer in molecular beam epitaxy. The insensitivity of the photoluminescence spectra to temperature is explained in terms of the effective carrier redistribution between quantum dots through the In0.2Ga0.8As quantum well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Long wavelength light emission was realized by capping InAs quantum dots (QDs) with short period GaAs/InAs superlattices (SLs) and an InGaAs strain-reducing layer (SRL). The optical properties were systematically investigated by photoluminescence tests. With increasing the periods of SLs, the emission wavelength of InAs QDs shifts from 1.27 to 1.53 mum. We explain the redshift as a result of the increased QD height with the SLs and the reduced strain in the dot caused by InGaAs SRL. (C) 2004 Published by Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electronic structure of a diluted magnetic semiconductor (DMS) quantum dot (QD) is studied within the framework of the effective-mass theory. We find that the energies of the electron with different spin orientation exhibit different behavior as a function of magnetic field at small magnetic fields. The energies of the hole decreases rapidly at low magnetic fields and saturate at higher magnetic field due to the sp-d exchange interaction between the carriers and the magnetic ions. The mixing effect of the hole states in the DMS QD can be tuned by changing the external magnetic field. An interesting crossing behavior of the hole ground state between the heavy-hole state and the light-hole state is found with variation of the QD radius. The strength of the interband optical transition for different circular polarization exhibts quite different behavior with increasing magnetic field and QD radius.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We demonstrate the self-organized InAs quantum dots capped with thin and In0.2Al0.8As and In0.2Ga0.8As combination layers with a large ground and first excited energy separation emission at 1.35 mum at room temperature. Deep level transient spectroscopy is used to obtain quantitative information on emission activation energies and capture barriers for electrons and holes. For this system, the emission activation energies are larger than those for InAs/GaAs quantum dots. With the properties of wide energy separation and deep emission activation energies, self-organized InAs quantum dots capped with In0.2Al0.8As and In0.2Ga0.8As combination layers are one of the promising epitaxial structures of 1.3 mum quantum dot devices. (C) 2004 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quantum measurement of a solid-state qubit by a mesoscopic detector is of fundamental interest in quantum physics and an essential issue in quantum computing. In this work, by employing a unified quantum master equation approach constructed in our recent publications, we study the measurement-induced relaxation and dephasing of the coupled-quantum-dot states measured by a quantum-point contact. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. As a result, our theory is applicable to measurement at arbitrary voltage and temperature. Both numerical and analytical results for the qubit relaxation and dephasing are carried out, and important features are highlighted in concern with their possible relevance to future experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The theoretical analysis of intersubband optical transitions for InAs/ InGaAs quantum dots-in-a-well ( DWELL ) detectors are performed in the framework of effective-mass envelope- function theory. In contrast to InAs/ GaAs quantum dot (QD) structures, the calculated band structure of DWELL quantitatively confirms that an additional InGaAs quantum well effectively lowers the ground state of InAs QDs relative to the conduction-band edge of GaAs and enhances the confinement of electrons. By changing the doping level, the dominant optical transition can occur either between the bound states in the dots or from the ground state in the dots to bound states in the well, which corresponds to the far-infrared and long-wave infrared (LWIR ) peaks in the absorption spectra, respectively. Our calculated results also show that it is convenient to tailor the operating wavelength in the LWIR atmospheric window ( 8 - 12 mu m ) by adjusting the thickness of the InGaAs layer while keeping the size of the quantum dots fixed. Theoretical predictions agree well with the available experimental data. (c) 2005 American Institute of Physics.