263 resultados para Interfacial charging
Resumo:
The interface states of [NiFe/Mo](30) and [Fe/Mo](30) multilayers have been investigated by x-ray small angle reflection and diffuse scattering. Significant interface roughness correlation was observed in both ultrathin [NiFe/Mo](30) and [Fe/Mo](30) multilayers. An uncorrelated roughness of about 27-3.1 Angstrom was revealed in the [NiPe/Mo](30) multilayers, which is explained as originating from a transition layer between the NiFe and the Mo layers. By the technique of diffuse scattering, it is clearly indicated that the interfacial roughness of NiFe/Mo is much smaller than that of Fe/Mo although the lattice mismatch is the same in both multilayers.
Resumo:
n-ZnO/p-GaN heterojunction light-emitting diodes with and without a sandwiched AlN layer were fabricated. The electroluminescence (EL) spectrum acquired from the n-ZnO/p-GaN displays broad emission at 650 nm originating from ZnO and weak emission at 440 nm from GaN, whereas the n-ZnO/AlN/p-GaN exhibits strong violet emission at 405 nm from ZnO without GaN emission. The EL intensity is greatly enhanced by inserting a thin AlN intermediate layer and it can be attributed to the suppressed formation of the GaOx interfacial layer and confinement effect rendered by the AlN potential barrier layer.
Resumo:
The boundary condition at the solid surface is one of the important problems for the microfluidics. In this paper we study the effects of the channel sizes on the boundary conditions (BC), using the hybrid computation scheme adjoining the molecular dynamics (MD) simulations and the continuum fluid mechanics. We could reproduce the three types of boundary conditions (slip, no-slip and locking) over the multiscale channel sizes. The slip lengths are found to be mainly dependent on the interfacial parameters with the fixed apparent shear rate. The channel size has little effects on the slip lengths if the size is above a critical value within a couple of tens of molecular diameters. We explore the liquid particle distributions nearest the solid walls and found that the slip boundary condition always corresponds to the uniform liquid particle distributions parallel to the solid walls, while the no-slip or locking boundary conditions correspond to the ordered liquid structures close to the solid walls. The slip, no-slip and locking interfacial parameters yield the positive, zero and negative slip lengths respectively. The three types of boundary conditions existing in "microscale" still occur in "macroscale". However, the slip lengths weakly dependent on the channel sizes yield the real shear rates and the slip velocity relative to the solid wall traveling speed approaching those with the no-slip boundary condition when the channel size is larger than thousands of liquid molecular diameters for all of the three types of interfacial parameters, leading to the quasi-no-slip boundary conditions.
Resumo:
本文研究了中性萃取剂三烷基氧化膦(Cyanex 923)从硫酸介质中萃取与反萃三价稀土Yb(III)的热力学和动力学机理,对该萃取剂的界面活性进行了深入的研究,并详细探讨了其从硫酸介质中萃取Ce(IV)时液/液界面的吸附参数及萃合物的聚集。此外,还考察了一种羧酸类萃取剂仲辛基苯氧基取代乙酸(CA-12)所组成的萃取有机相中W/O微乳液的热力学稳定性与结构参数。 1. 研究了Cyanex 923从硫酸介质中萃取与反萃Yb(III)的热力学。考察了一些影响萃取与反萃的条件,如:酸度、盐析剂、温度、反萃剂种类等,得出了萃取机理与热力学函数,为分离Yb(III)与其它稀土元素提供了有用的参数。 2. 研究了Cyanex 923 从硫酸体系中萃取Yb(III)的动力学,通过考察搅拌强度、比界面积、温度、反应物浓度等各种因素对萃取速率的影响,确定其对Yb(III) 的萃取动力学为扩散控制过程,反应主要在液/液界面进行,控制步骤为反应物种通过界面凝滞膜的界面扩散过程,并推导出了萃取速率经验式。 3. 考察了温度、离子强度、酸度、添加剂和不同稀释剂对萃取剂Cyanex 923在Cyanex 923-稀释剂/Na2SO4-H2SO4界面的界面活性的影响,得到了Cyanex 923在不同条件下的界面吸附参数,对萃取剂界面活性与萃取动力学的关系进行了讨论。 4.考察了Cyanex 923-正庚烷/Ce(IV)-H2SO4 萃取体系在液/液界面的吸附参数,重点研究了体系的界面活性物种、萃合物聚集造成的界面现象及其对溶剂萃取过程的影响,详细地研究了Ce(IV)和H2SO4的萃取对萃取体系一些物化性质的影响,观测到了萃取体系中反胶束的存在。 5. 研究了皂化CA-12—添加剂组成的萃取有机相中W/O微乳液的热力学稳定性,考察了皂化率、电解质本性与浓度、pH值、温度对体系最大加溶水量的的影响,并考查了不同添加剂与含水量时微乳液形成的热力学函数及结构参数。
Resumo:
围绕论文题目“纳米结构界面组装及电化学SPR研究”,我们将SPR与电化学技术有机的结合起来,建立了电化学SPR(EC-SPR)技术,开展了相关的EC-SPR研究工作。同时,在一些特殊纳米结构的界面组装方面进行了创新研究。本论文研究工作的主要内容和创新点表现在以下几个方面:1.首次成功地将纳米粒子自组装膜模板与化学镀金技术相结合成功地用于湿化学法制备SPR响应基片,攻克国际上仅用物理法制备SPR镀金片的局限和困难,为SPR技术的进一步普及奠定了一定的基础。2.此外,还成功地将纳米粒子自组装膜模板与化学镀金技术相结合,制备了Au(III)单晶纳米岛阵列薄膜及电极。3.在国内率先将电化学和表面等离子体共振(SPR)光谱技术相结合,构建了EC-SPR仪器操作系统;并将此技术用于现场原位表征和研究导电聚合物薄膜和生物大分子(DNA和电活性蛋白质分子)纳米结构组装体的光电特性。4. 首次合成并报道了纳米粒子模板法制备中空的银/金表面钉状双金属纳米粒子,及其在水和空气界面受扩散受限聚集控制的二维介观分形聚集。丰富和拓展了纳米粒子二维分形聚集的研究。5.将欠电位沉积电化学方法拓展用于表面微加工。实验结果表明,对化学镀制备的多晶金SPR响应基片进行连续的银欠电位沉积与溶出电化学处理,不仅可以改善金膜表面的粗糙度,还能对表面的原子进行结构重排,使其具有An(III)的电化学响应特征;SPR信号对SPR响应金膜表面的原子排列非常灵敏。6.将欠电位沉积电化学法用于新颖的纳米催化剂设计,首次制备了铂原子单层沉积的纳米金单层膜并成功地用于4电子氧催化还原反应。大基于纳米受限环境下水的特殊性质(不挥发性)的启示,成功地进行了DDAB表面活性剂泡囊和环状多金属氧酸盐(POM)纳米簇的仿生超分子模板界面静电组装。
Resumo:
本文系统研究了一种中性有机磷酸酷2一乙基己基麟酸二(2一乙基己基)酉旨(DEHEHP)从硝酸体系中萃取Ce~(4+)和F~-的热力学和动力学机理,并对该萃取剂的界面活性进行了深入的研究。在此基础上,探讨了钟(IV)与其他稀土和针分离的可能性,从理论上系统地研究了盐析剂存在下DEHEHP作为萃取剂对三价稀土(RE~(3+))的萃取规律,并遵循基础一应用的原则,完成了从氟碳饰矿的硝酸浸出液中提取四价饰的分馏串级萃取模拟实验。此外,我们也研究了DEHEHP与酸性鳌合萃取剂HPMBP的混合体系对RE~(3+)的协萃效应。基于上述研究,评估了DEHEHP在稀土萃取领域的潜在的应用前景。具体的研究内容如下:1.模拟氟碳钟矿硝酸浸出液,系统研究了复杂体系中DEHEHP萃取Ce(IV)和F(I)的热力学机理,推导了萃取反应方程式及其机理,硼酸的加入,既不被萃取,也不影响饰和氟的萃取。2.DEHEHP作为硝酸体系中饰(IV)的良好萃取剂,研究了饰(IV)与其他稀土和针分离的可能性。在此基础上,进行了DEHEHP从含F(I)、Ce(IV)的硝酸稀土溶液中提取Ce(W)的工艺模拟实验,并获得纯度为99.9-99.99%CeO_2,饰产品中ThO_2/CeO_2<10~(-4),该工艺高效简便,具有很好的应用前景。3.系统研究了在盐析剂存在下,DEHEHP从硝酸介质中萃取RE~(3+)的规律,发现了明显的四分组效应,并确定了Y在萃取系列中所处的位置,而Sc的萃取能力远远高于其它稀土元素。4.用层流恒界面池研究了DEHEHP萃取Ce(IV)和F(I)的传质动力学模式,考察了多种因素对萃取速率的影响,提出了水相化学反应机理,这与DEHEHP的界面活性有关,并且发现氟的存在,降低了钟的萃取速率。5.系统研究了各种因素对DEHEHP界面活性的影响,定性探讨了萃取剂界面活性与萃取动力学的关系,为萃取动力学传质模式的推导提供了辅助依据。6.考察了DEHEHP与酸性鳌合萃取剂HPMBP的混合体系分别在盐酸和硝酸介质中对RE~(3+)(包括Y~(3+))的萃取和分离,得出了协萃反应方程式和平衡常数,并计算了相邻稀土元素间的分离因素,讨论了此混合体系对部分稀土分组或两两分离的可能性。
Resumo:
本文选取比较常见的PP/EVA、PE/EVA共混体系作为增强交联研究的对象,研究了共混体系的增强交联规律,并针对目前普通使用的多官能团单体存在着与聚合物体系相容性差、易析出、高温挥发大的弱点,设计合成几种多官能团单体。此外,还研究了共混体系增强界面反应,讨论了增强界面反应的一般原理和增强界面反应对改善不相容共混体系相间粘附的作用影响。
Resumo:
Electrical measurements were combined with surface techniques to study the Pt/Si interfaces at various silicide formation temperatures. Effects of deep centers on the Schottky barrier heights were studied. Hydrogen plasma treatment was used to passivate the impurity/defect centers at the interfaces, and the effects of hydrogenation on the Schottky barrier heights were also examined. Combining our previous study on the Pt/Si interfacial reaction, factors influencing the PtSi/Si Schottky barrier diode are discussed.
Resumo:
Ultraviolet and X-ray photoemission spectroscopies (UPS and XPS) have been employed to SnO2 and its interface with P-type a-SiCx:H. The HeI valence band spectra of SnO2 show that the valence band maximum (VBM) shifts from 4.7 eV to 3.6 eV below the Fermi level (E(F)), and the valence band tail (VBT) extends up to the E(F), as a consequence of H-plasma treatments. The work function difference between SnO2 and P a-SiCx:H is found to decrease from 0.98 eV to 0.15 eV, owing to the increase of the work function of the treated SnO2. The reduction of SnO2 to metallic Sn is also observed by XPS profiling, and it is found that this leads to a wider interfacial region between the treated SnO2 and the successive growth of P a-SiCx:H.
Resumo:
Magnetic multilayers [NixFe100-x/Mo-30] grown by dc-magnetron sputtering were investigated by x-ray small-angle reflection and high-angle diffraction. Structural parameters of the multilayers such as the superlattice periods, the interfacial roughness, and interplane distance were obtained. It was found that for our NixFe100-x/Mo system, the Mo layer has bcc structure with [110] preferential orientation, while the preferential orientation of the NixFe100-x layer changes from a fee structure with [111] preferential orientation to a bcc structure with [110] preferential orientation with decreasing values of x. An intermixing layer located in the interlayer region between the NixFe100-x and Mo layers exists in the multilayers, and its thickness is almost invariant with respect to an increase of Mo layer thickness and/or a decrease of x in the region of x greater than or equal to 39. The thickness of the intermixing layer falls to zero when x less than or equal to 23.
Resumo:
In this work we investigate the lateral periodicity of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of X-ray scattering techniques. The multilayers were grown by metalorganic Vapour phase epitaxy on (001)GaAs substrates, which were intentionally off-oriented towards the [011]-direction. The substrate off-orientation and the strain distribution was found to affect the structural properties of the superlattices inducing the generation of laterally ordered macrosteps. Several high-resolution triple-crystal reciprocal space maps, which were recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction and contour maps of the specular reflected beam collected in the vicinity of the (000) reciprocal lattice point, are reported and discussed. The reciprocal space maps clearly show a two-dimensional periodicity of the X-ray peak intensity distribution which can be ascribed to the superlattice periodicity in the direction of the surface normal and to a lateral periodicity in a crystallographic direction coinciding with the miscut orientation. The distribution and correlation of the vertical as well as of the lateral interface roughness was investigated by specular reflectivity and diffuse scattering measurements. Our results show that the morphology of the roughness is influenced by the off-orientation angle and can be described by a 2-dimensional waviness.
Resumo:
A low resistance and shallow ohmic contact to n-GaAs is performed by using Ge/Pd/GaAs trilayer structure and rapid thermal annealing process. The dependence of specific contact resistivity on the temperature of rapid thermal annealing is investigated. A good ohmic contact is formed after annealing at 400-500 degrees C for 60 s. The best specific contact resistivity is 1.4 x 10(-6) Omega cm(2). Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS) and scanning electron microscopy (SEM) are used to analyze the interfacial microstructure. A strong correlation between the contact resistance and the film microstructure is observed.
Resumo:
The interfacial behavior of the single quantum well (SQW) GaAs/AlxGa1-xAs electrode in HQ/BQ and Fc/Fc(+) electrolytes was characterized respectively by studying the quantum confined Stark effect and Franz-Keldysh oscillation with electrolyte electroreflectance spectroscopy. The interaction of the surface state of the SQW electrode with redox species and its effects on the distribution of external bias at the interface of the SQW electrode are discussed.
Resumo:
Electrical, structural and reaction characteristics of In-based ohmic contacts to n-GaAs were studied. Attempts were made to form a low-band-gap interfacial phase of InGaAs to reduce the barrier height at the metal/semiconductor junction, thus yielding low-resistance, highly reliable contacts. The contacts were fabricated by e-beam sputtering Ni, NiIn and Ge targets on VPE-grown n(+)-GaAs film (approximate to 1 mu m, 2 x 10(18) cm(-3)) in ultrahigh vacuum as the structure of Ni(200 Angstrom)/NiIn(100 Angstrom)/Ge(40 Angstrom)/n(+)-GaAs/SI-GaAs, followed by rapid thermal annealing at various temperatures (500-900 degrees C). In this structure, a very thin layer of Ge was employed to play the role of heavily doping donors and diffusion limiters between In and the GaAs substrate. Indium was deposited by sputtering NiIn alloy instead of pure In in order to ensure In atoms to be distributed uniformly in the substrate; nickel was chosen to consume the excess indium and form a high-temperature alloy of Ni3In. The lowest specific contact resistivity (rho(c)) of (1.5 +/- 0.5)x 10(-6) cm(2) measured by the Transmission Line Method (TLM) was obtained after annealing at 700 degrees C for 10 s. Auger sputtering depth profile and Transmission Electron Microscopy (TEM) were used to analyze the interfacial microstructure. By correlating the interfacial microstructure to the electronical properties, InxGa1-xAs phases with a large fractional area grown epitaxially on GaAs were found to be essential for reduction of the contact resistance.
Resumo:
Tunneling escape of electrons from quantum wells (QWs) has systematically been studied in an arbitrarily multilayered heterostructures, both theoretically and experimentally. A wave packet method is developed to calculate the bias dependence of tunneling escape time (TET) in a three-barrier, two-well structure. Moreover, by considering the time variation of the band-edge profile in the escape transient, arising from the decay of injected electrons in QWs, we demonstrate that the actual escape time of certain amount of charge from QWs, instead of single electron, could be much longer than that for a single electron, say, by two orders of magnitude at resonance. The broadening of resonance may also be expected from the same mechanism before invoking various inhomogeneous and homogeneous broadening. To perform a close comparison between theory and experiment, we have developed a new method to measure TET by monitoring transient current response (TCR), stemming from tunneling escape of electrons out of QWs in a similar heterostructure. The time resolution achieved by this new method reaches to several tens ns, nearly three orders of magnitude faster than that by previous transient-capacitance spectroscopy (TCS). The measured TET shows an U-shaped, nonmonotonic dependence on bias, unambiguously indicating resonant tunneling escape of electrons from an emitter well through the DBRTS in the down-stream direction. The minimum value of TET obtained at resonance is accordance with charging effect and its time variation of injected electrons. A close comparison with the theory has been made to imply that the dynamic build-up of electrons in DBRTS might play an important role for a greatly suppressed tunneling escape rate in the vicinity of resonance.