402 resultados para 1,2,3,4-Tetramethylbenzene
Resumo:
芳香环状低聚物的合成是二十世纪八十年代末发展起来的研究领域,其特有的环状结构和可进行可控的开环聚合决定了芳香环状低聚物具有广阔的应用前景。本文从研究单体结构与成环反应的关系出发,开拓了一种合成芳香环状聚醚酮的新方法—改进的Friedel-Crafte反应法,采用该方法成功地合成了一系列新型结构的大环化合物,并首次利用流变仪对开环聚合过程中的流变行为进行了较为系统的观测。根据acoson-Stockmayer环化理论,应用基质辅助激光解吸离子化飞行时间质谱(MAIDL-TOF MS),对一系列芳香环状低聚物组分分布进行分析,研究了芳香环状低聚物的产率、组分分布与单体结构的关系。结果表明:芳香聚醋、聚麟酸醋及芳香聚醚环状低聚物系列中,InCn与1nn呈良好的线性关系,符合J-S理论分布。环状齐聚物的产率与组分分布受单体的中心键角影响,单体的中心键角在100°~120°范围内,其中心键角愈小,γ值愈大。γ值愈大,反应产物中小环化合物的含量越高,而小环化合物的含量的增加是高产率地合成环状齐聚物的前提之一。在此理论的指导下,通过对单体结构的模拟,高选择性地合成了一种新型结构的芳香环状聚硫醋二聚体,对其结构进行了精确的表征,在不同溶剂中得到了该环状二聚体的单晶,单晶X闪ray衍射表明该二聚体为环张力极小的大环化合物。基于上述理论,以有利于成环的邻苯二酞氯为酞基化试剂,对Friedel-Crafts酞基化反应在合成芳香环状齐聚物中的应用进行了系统研究,开拓了一种合成芳香环状预聚体的新方法—改进的Friedel-Crafts酞基化反应法。发现反应体系中Lewis碱的存在有利于选择性地形成环状产物。并进一步确定反应最佳条件为: Lewis碱和催化剂Alcl3与富电单体的摩尔比分别为1.2和3.4; 1,2-二氯乙烷为本反应的最佳溶剂;等当量的反应单体要求缓慢滴加到形成“假高稀”的溶剂体系中;Lewis碱NMP,DMF等都适用于本反应体系。在此优化条件下,以邻苯二酞氯和间苯二酞氯为酞基化试剂,室温下,合成了一系列芳香环状聚醚酮酮、聚醚酮、聚醚矾酮等新型结构的环状齐聚物,利用MALDI-TOF-MS,NMR,GPC,FTIR,DSC,元素分析等手段对环状结构进行了精确的表征;DSC分析表明含邻苯二拨基结构的环状齐聚物为无定型材料;部分产物的产率高达90%。在阴离子引发剂联苯双酚钾存在下,制备的环状齐聚物成功进行了熔融开环聚合,得到了相应结构的高分子量的线性开环聚合产物。其中,含邻苯二拨基结构的环状聚醚酮酮、环状聚醚酮矾的开环聚合产物的比浓粘度分别达到0.42dL/g,0.36 dL/g(0.5%的DMF溶液,25士0.1℃);四种含间苯二锁基结构的环状齐聚物的开环聚合产物的Tg与常规亲电沉淀反应合成的线性高聚物的Tg相同。含侧甲基的开环聚合产物的Tg比对应的开环聚合的产物的Tg高约5℃。研究结果表明用亲电缩聚方法制备芳香环状聚醚酮与亲核缩聚法相比较,具有成本低廉、反应条件温和丫产率高、易于大规模制备等优势,开拓了一种制备环状化合物的方法。自从美国G.E.公司利用环状聚碳酸酷的开环聚合制备线性聚碳酸醋以来,对芳香环状低聚物的开环聚合过程的研究仅局限在由GPC监测反应某一时刻的产物的分子量,而缺乏对与应用更为接近的开环聚合中的粘度的变化的研究。本文以界面缩聚反应高产率地合成芳香环状双酚A聚酷二聚体为对象,研究了流变仪在开环聚合中的应用。利用流变仪对环状二聚体开环聚合过程进行了较为系统的观测,研究了不同条件下的开环聚合中的流变行为,结果表明,开环聚合存在引发期,而且在引发期,熔融体的粘度低于10Pa·S,超过引发期,粘度呈指数级增长。引发期的长短可以通过引发剂的种类、浓度、开环聚合的温度等条件进行有效地控制。芳香环状聚酷二聚体与环状聚碳酸醋的开环共聚合的流变行为的研究结果表明:开环共聚合可以降低开环聚合的温度,调整引发期,是提高聚合产物的分子量的有效途径。用流变仪对以改进的Friedel-Crafts反应合成的芳香环酮齐聚物的开环聚合中的流变行为进行了监控。在330℃,剪切速率为0.05S-l下,熔融的环状齐聚物的粘度为2.0Pa·S。通过对开环聚合的反应条件的控制,同样实现了开环聚合的可控,通过改变其开环聚合的引发期的长短及粘度的变化规律,可、适应不。条一定为加工设计与成型加工提供理论指导和模型设计,必将进一步推进开环聚合工 艺向应用方向的发展。
Resumo:
本论文利用溶胶一凝胶法和水热法制备了不同离子(Eu~3+,Sm~3+,Mn~2+,Fe~3+,Co~2+,Ni~2+)作为磁性杂质的ZnO基稀磁半导体,并系统地研究了材料的薄膜、粉末和纳米结构的结晶特性、结构形态和光、电、磁性质。溶胶一凝胶法制备的薄膜的晶体为c轴取向生长的六方纤维锌矿结构。薄膜的取向生长受烧结气氛、烧结温度和掺杂离子浓度的影响,其中烧结气氛是影响薄膜取向生长的最直接、最显著因素。随着烧结气氛中氧含量的减小,薄膜的沿c轴生长的趋势加强。此外,烧结温度的提高也增强薄膜沿c轴生长的趋势,但掺杂离子浓度的增加却抑制薄膜的c轴取向生长特性。通过薄膜表面形态的研究发现,在空气中烧结的薄膜由立方晶粒构成,而在真空中烧结的样品则由不规则的片状晶粒组成。组成薄膜的多晶颗粒粒径小于10Onm,15层薄膜的膜厚为357-366nm。掺杂离子在薄膜中均匀分布,成膜过程不改变掺杂离子(Eu3+,Sm3+,Mn2+,Fe3+,Co2+,Ni2+)和基质离子(Zn2+和O2-)的价态。 不同Eu3+掺杂浓度的ZnO薄膜样品的吸收光谱的吸收边出现在363nm和368nm之间,对应半导体材料的禁带宽度Eg=3.42~3.40ev。由于Eu3+改变了薄膜的表面性质,Zn1-xEux(0.005≤x≤0.15)薄膜在可见光区出现了一系列干涉带。Zn1-xTMxO薄膜的吸收光谱的吸收边位置出现在356nm-369nm,对应半导体的禁带宽度为3.34-3.46eV,在可见光区发现了Co2+的电子的d-d跃迁引起的吸收带。随着掺杂浓度的增加,薄膜的透光率逐渐减小。Zn1-xCoxO薄膜在近紫外与可见光区的透光率都在60%以上,Zn1-xEuxO薄膜的透光率则高达90%。在Zn1-xEuxO薄膜的激发发射光谱中,以613nm作为监控波长,激发光谱除了检测到Eu3+的7F→5D能级的吸收跃迁外,还检测到最大值位于378nm附近的ZnO的吸收带。以394nm为激发波长,发射光谱检测到Eu3+的5D0→7FJ(J=1,2,3,4)跃迁。以zno的带隙能量378nm作为激发波长进行激发,检测到Eu3+的5D0→7F2跃迁,说明基质zno和E矿十之间存在能量交换。薄膜磁性测试在4-400K温度范围内进行,发现在此温度范围内Zn0.9Eu0.1O薄膜表现居里一外斯顺磁性;在低温区,存在磁性增强现象。zno.gCoo.IO薄膜在23oK以下表现为铁磁性,200K的M-H曲线显示薄膜的剩磁(Br)约为0.21em侧g,矫顽力(Hc)约为327Oe。但Zn0.9Mn0.1O,Zn0.9Ni0.1O,Zn0.9Co0.1O薄膜的磁性测试则显示在80K以上三种薄膜均表现为顺磁性。Zn0.9Eu0.1O薄膜的电阻呈现典型的半导体性质,在ZT的磁场下,薄膜在110K获得最大14.53%的磁阻率。Zn1-xTMxO薄膜的电阻也表现典型的半导体特性,实验研究了薄膜在不同掺杂离子浓度、外加磁场以及温度条件下的磁阻性质。粉末样品中磁性离子的掺杂浓度均小于薄膜样品。Co,Fe,Ni,Mn掺杂的Zn1-xTMxO粉末在80以上均为顺磁性。在Co2+掺杂的粉末样品中没有发现类似于薄膜样品的铁磁性,说明DMS的磁性与制备条件关系密切。实验证明了利用sol-gel方法,Zno:TM稀磁半导体能够有效地组装在MCM-41和AAO的孔道内。ZnO:TM材料组装进在MCM-41孔道后,不改变孔道的六方结构但使孔径变小。随着组装次数的增加,MCM-41的孔径和孔容累进减小。组装在AAo模板孔道内的材料呈单分散纳米颗粒状态,颗粒粒径小于loonm。组装材料的磁性测试显示:组装在MCM-41内的Zn0.9Co0.1O材料在80K-30OK呈现超顺磁性。而Mn,Fe,Ni掺杂的Zno在此温度范围内表现顺磁性。组装在AAO内的ZnO:TM(TM=Mn,Fe,Co,Ni)材料在SOK-30OK温度范围内都呈现顺磁性。在水热法合成ZnO:A(A=Bu,Sm,co)纳米粒子的过程中,发现反应温度、压力、时间和溶液浓度等因素只影响Znl.xCoxO纳米粒子的的产量,而溶液的酸度却影响产物的形貌。控制溶液的酸度,可以控制产物的形貌从粒状向棒状转变。当溶液的PH=5时,在甲醇:水体系中可以水热合成规则的棒状ZnO:RE(RE=Eu,Sm)纳米晶。所得到的Zn0.98Co0.02O纳米晶在80K呈超顺磁行为,而ZnO:RE(RE=Eu,Sm)纳米晶在80K则表现较弱的顺磁性。 实验通过控制水热条件,制备了一种新型结构的柠檬酸锌晶体。由于利用了水热反应的非平衡合成条件,所得到的晶体的层状结构不同于目前已知的所有柠檬酸配合物的离散型分子结构。单晶衍射结果表明:化合物是一个由八面体和一个非对称单元交替相连构成的二维层状结构。
Resumo:
一般来说,构筑自组装结构,需要首先构筑基本单元(BuildingBlocks)。广义来讲,原(离)子、分子、原子团、超分子、高分子、生物分子、纳米粒子以及其他尺度的粒子基元都可以充当自组装的基本单元。基本单元在一定条件下会自发聚集生成具有一定功能的材料一或器件。本文关心的是在纳米尺度(1-100纳米)范围内构筑贵金属纳米粒子自组装纳米结构。具体地说,我们侧重贵金属(金、银)纳米粒一子的化学合成,控制贵金属纳米粒子组装成特定的纳米结构(纳米粒子集合体),研究纳米粒子和纳米结构的等离子共振吸收和电化学特性。本文从以下几个方面展开叙述如下:(1)使用两相法,用相对廉价的阳离子表面活性剂十六烷基三甲基澳化按作为保护剂,合成了稳定的金纳米粒子。系统研究了该粒子在各种条件下的自组装过程:溶剂挥发诱导的自组装、双功能分子桥联的自组装和施加力场条件下的受迫自组装。(2)发现阳离子表面活性剂一四辛基漠化钱可以直接诱导水溶性带负电荷的金纳米粒子从水溶液到甲苯相的相转移。更有趣的是,相转移具有尺寸效应,利用尺寸效应可能会实现对某些多分散金纳米粒子进行尺寸精馏。(3)系统研究了小分子桥联的金纳米粒子的可控组装及等离子学和电化学特性。我们发现硫瑾染料分子、钴卟啉梁料分子、刚性分子导线、碘离子都可以作为连接金纳米粒子的,分子胶水。使用类似建筑学上的“砖块胶泥组装”策略可以在纳米尺度莎围内搭筑纳米建筑。所制备的纳米建筑具有可调节的等离子吸收和电催化特性。(4)使用微分脉冲伏安技术研究了银纳米粒子表面组装体在水溶液中的库仑阻塞现象。(5)分子膜支撑的金纳米粒子二维阵列具有纳米阵列电极行为,控制纳米粒子的组装调节了电极界面的异相电子转移动力学。(6)为了解决分子纳米表面修饰的聚集问题,我们发展了固定化纳米表面修饰的方法。该方法适用于分子单层、双层和多层分子自组装系统,并且可以直接进行光学和电化学表征。在纳米表面受限的分子自组装系统表现出了一些有趣的电化学特性。
Resumo:
针对有机一无机杂化材料制备过程中致命的体积收缩问题,本论文相继选用一系列具有亲水性官能团的聚倍半硅氧化物类前驱体为基体,采用溶胶一凝胶方法,以区域限制方式把水溶性导电聚苯胺固定在三维无机网络内,获得了耐水型自支撑杂化导电膜,该自支撑膜呈现出一定的机械强度与耐磨性。同时,为了进一步增加有机、无机组分之间的作用力,获取分子级别杂化材料,本文尝试了在导电聚苯胺与无机网络之间引入共价键、离子键等较强相互作用,得到了一些有意义的结果,具体如下:(1)亲水性的倍半硅氧烷前驱体、桥联倍半硅氧烷前驱体均能与水溶性导电聚苯胺形成平整的自支撑膜,该导电膜呈现出较好的耐”水性。(2)通过一步掺杂法制备的化学键接型水溶性导电聚苯胺/无机杂化膜除显示出良好的耐水性外,其热稳定性也得到了提高,从而为耐热型导电杂化膜的开发提供了思路。(3)有机一无机组分间通过离子键接引入静电相互作用亦是提高体系相容性,获取耐水型自支撑杂化膜的另一有效的方法。但由于导电膜中含有大量的离子键,与上述两体系相比,机械强度显得稍脆。(4)带有长链状亲水基团的掺杂剂酸性磷酸酷具有很强的自组装能力,不仅能在杂化体系中指导聚苯胺纳米管的构筑,而且能通过聚合单体法直接生成大批量聚苯胺纳米管材料。
Resumo:
分子导线作为未来分子电子器件的重要组成部分,其合成,组装及电子传输性能研究是当今化学、物理、生物和微电子工程等领域里一个非常热门的研究课题。本论文在齐聚苯乙炔及齐聚苯乙炔一唾吩乙炔分子导线的合成、组装及电子传输性能研究方面进行了一些工作,主要成果有以下几个方面:一、官能化短链分子导线的合成与表征比较系统地合成不同端基,不同分子长度和不同主链结构的乙酞琉基官能化的齐聚苯乙炔类分子导线,以便比较系统地研究各种因素对这类分子导线的自组装及电子传输性能的影响。对所有合成的官能化分子导线进行了红外光谱、核磁共振氢谱和质谱表征以确定其结构。二、长链分子导线的合成与表征用溶液和固定相快速合成方法合成了一系列苯乙炔齐聚物及苯乙炔一(蜜份乙炔交替共聚齐聚物:1)采用简便的路线,用溶液和固定相方法快速合成出十二烷氧基取代的苯乙炔齐聚物,最一长达到了八聚体。(2)采用一条最简便的路线,用固定相方法快速合成了异丙基取代的苯乙炔齐聚物,最长达到了八聚体。(3)用溶液和固定相方法首次合成了苯乙炔一唾吩乙炔交替共聚齐聚物。(4)用一种新颖的“现场去保护/偶联”二倍速方案快速合成出十二烷氧基取代的苯乙炔齐聚物,最长达到了八聚体。该方案最大的优点在于无需分离出对空气敏感的芳香端炔化合物,从而简化了实验操作以及提高了产物的纯度。对所有合成的齐聚物进行了红外光谱、核磁共振氢谱、核磁共振碳谱和激光质谱表征以确定其结构。三、官能化分子导线的组装及电子传输性能研究(l)用STM和CP-AFM研究了合成的官能化分子导线在金基底的自组装行为,发现形成的自组装单层缺陷很少,而且自组装单层非常均一。(2)用电化学和导电原子力显微镜技术研究了上述官能化齐聚苯乙炔分子导线的电子传输性能,发现界面接触和分子长度对分子导线的电子传导能力有很大的影响,而链结构的影响则相对要小些。此外,我们还发现齐聚苯乙炔体系的电子传输衰减系数β值仅为0.19A-1,说明它是一类性能优异的分子导线侯选物。(3)通过量子化学计算,我们对实验结果进行了初步解释。
Resumo:
用ICP-AES法分析样品时,多数样品为溶液。处理难溶样品费时多,易沾污,有时需加入大量试剂;使空白或背景增大影响分析灵敏度。本文研究将固体粉末悬沲体直接引入等离子体的进样方法,试图建立一种快速,简便并能满足一定精度和灵敏度要求的分析方法。本文使用美国Baird PS-1型光电直读ICP发射光谱仪器,自制改进型的GMK雾化器,研究了影响粉末悬沲体样品谱线强度、背景强度和线背比的因素;谱线干扰及其校正;用一套人工合成样品做工作曲线及水系沉积物样品的分析。我们从实验中观察到:1. 粉末粒度是影响进样的重要因素,粒径越小,谱线强度越大。2. 入射功率增大时,所有研究元素的谱线强度和背景强度都增大,但多数元素的线背比下降。3. 载气流量较小时,硬线的强度及线背比较大;反之则软线强度及线背比较大。所有元素的背景强度都随载气流量增加而减小。4. 观察高度较低,硬线强度及线背比较大,反这则软线强度及线背比较大;多数元素的背景强度随观察高度增高而减小。5. 向粉末悬沲体中加入少量异丙醇,多数元素的背景强度减少,谱线强度及线背比增大。6. 增大样品提升率,谱线强度和线背比都随之增大。7. 增大粉末悬沲体的浓度,谱线强度增加,但浓度太大易堵,我们认为浓度为10mg/ml较合适。本文用元素间干扰比较正谱线干扰,用不同形态的样品(溶液和固体粉末悬浮体)测定其干扰比,发现它的干扰比数值相近。用一套人工合成样品做工作曲线,动态范围较宽,检出限与溶液法相当。相对标准偏差为1.4 ~ 4.6%,相关系数大于0.997。我们还用八个GSD水系沉积物标准参考样品做校准曲线,检出限和相对标准偏差,实验表明:加大功率有助于克服粒度和矿物组成不同等因素对分析元素的影响,八个GSD样品与人工合成标样符合较好。用直接粉末法分析样品时有基体干扰,用GSD样品做的检出限和相对标准偏差都不如合成样品。用该方法分析人工材料中的杂质可能更为合适。
Resumo:
我在研究生期间所做的论文为铝及其形态的分析方法。为什么要做这项工作呢?许多研究表明:①铝是天然水和土壤中十分重要的pH缓冲剂,②铝能影响土壤中象磷和有机碳这些重要元素的环比,③铝对动物、植物及人体都有害,这些过程都与铝的形成有关,因此弄清铝的形态及测定各种形态的浓度十分有意义。由于铝在水中含量较低,且水中含有其它共存离子,因此围绕铝形态的分析,首先建立了一种抗干扰,高灵敏的方法来测定总铝量及各种形态铝的浓度。利用铬天青s试剂测定铝的方法很多,铝与铬天青s能形成红色的二元配合物,但其灵敏度低,稳定性差。近年来人们大多采用铝-铬天青S-表面活性剂三元体系,提高了灵敏度和选择性。本文研究了铝-铬天青S-溴代+元烷基吡啶三元显色体系,试验确定了三元显色体系的最佳显色条件。其条件如下:实验结果及选定的条件 影响因素 实验结果 选定条件 显色酸度 pH 5.5~7.5 6.0 1 * 10~(-4)M CAS溶剂用量 0.3~0.5ml 0.4ml 5 * ~(-3)M CPB的用量 0.5~1.5ml 0.9ml此三元体系十分稳定,在常温下,显色液放置40分钟才能基本发色完全,其吸光度在24小时内无变化。实验方法为于50ml容量瓶中,加入铝标准液,然后加0.4ml 1 * 10~(-4)M CAS溶液,0.9ml CPB 5 * 10~(-3)M溶液,加入用盐酸调好的pH≈6的六次甲基四胺缓冲液5ml,用水定容,放置40分钟,于644nm处,1cm比色池,以试剂空白作参电测定吸光度。当铝量为0~5ug/50ml时,有色配合物遵从电尔定律,其线性相关系数为0.9999,表观摩尔吸光系数ε_(644nm) = 1.43 * 10~5 l·mol~(-1)·cm~(-1)。本法做了三十六种共存离子的影响实验,多数常见离子不干扰铝的测定,此法主要用于水中铝的测定,家Gr~(3+), Ln~(3+), Ti~(4+), Sn~(4+), Be~(2+)这些离子对铝离子测定的干扰尽管很大,但它们在水中的含量很低,因此可以不考察其干扰作用,F~-和PO_4~(3-)都易与铝离子形成配合物,但水中F~-,PO_4~(≡)含量很小,一般情况下不干扰铝的测定。本法主要考虑了Cu~(2+), Fe~(3+)对铝测定的干扰,用硫脲掩蔽Cu~(2+), 用抗坏血酸掩蔽Fe~(3+), 得到了满意的结果。应用本法测定实际水样,五次测定结果的相对标准偏差为5%,用标准加入法测得其回收率在92~104%之间。由以上工作可以看出,由于CPB的加入,使得Al-CAS-CPB三元体系的摩尔吸光系数较Al-CAS二元配合物的大3.5 倍,最大吸收波长也产生了较大的红移,因此,有必要进一步探讨一下此三元体系的反应机理。目前,阳离子表面活性剂对显色反应作用机理的研究较多,但尚没取得一致的见解,这些研究结果可以归纳为四个方面,1.拟均相萃取模型,2.电荷胶米模型,3.双区作用模型,4.配位体-配位体相互作用的理论和协同微扰机理。本文以Al-CAS-CPB体系作为代表,通过Al-CAS-CPB三元配合物的结构、吸收光谱的变化和表面能力测定的结果探讨了CPB作用机理。利用电泳和离子交换实验说明了Al-CAS-CPB的配阴离子,利用平衡移动法和直线法测得Al:CAS的配位电为1:2,用等摩尔连续变换法测定Al:CPB的配位电为1:4,因而配合物的组成比Al:CAS:CPB=1:2:4。最后推出此配合物的可能结构。从CAS、Al-CAS、Al-CAS-CPB的结构出发,研究了配位体之间相互作用对CAS中大共轭π键中π-电子流动难易的影响,成功地解释了Al-CAS-CPB最大吸收波长产生红移的原因。通过对CAS溶液浓度与三元配合物最大吸收波长、吸光度影响的研究,说明CPB有三个作用,一是与Al、CAS反应形成三元配合物,同时提高了Al与CAS的配位电;二能与CASi试剂产生缔合作用;三是能够形成胶米;增大了三元配合物在水中的溶解充,这三种作用相互制约,并与Al、CAS及CPB之间的摩尔比有关。通过对配合物吸光度,表面张力和表面活性剂浓度关系的研究及CMC值前后此三元体系吸光度、表面张力变化的比较,结果表明,单分子和形成胶米的表面活性剂同样具有增敏作用,这与郑用熙提出的双区作用机理相一致。在CMC值前,单分子表面活性剂与Al、CAS形成三元配合物而起增敏作用,在CMC值以后,CPB与Al、CAS形成胶米配合物而产生增敏作用。最后,讨论了三元体系的最大吸收波长与表面活性剂浓度的关系,结果表明,随CPB浓度的增大,三元体系的最大吸收波长发生蓝移。产生蓝移的原因可以从结构化学的角度得到解释,导致最大吸收波长不同的原因是在CMC前后,Al-CAS-CPB三元配合物所处的微环境不同。对稀酸性水体中铝形态的分离分析及低浓度铝的测定已有人进行研究,普遍认为无机单核铝是致毒因子,因此无机单核铝的浓度较其实际浓度对生命物质的意义更为重要。本文基本上采用Dirscoll形态分离法进行测定土壤酸性浸出液中铝的形态,用Al-CAS-CPB三元显色反应测定各部分铝形态和浓度。其各部分铝形态的分离如下:总活性铝(Al_r):将样品用0.2um微孔滤膜过滤,用1N HCl将样品酸化为pH等于1,持续24小时,用Al-CAS-CPB测得其中铝含量。总单核态铝(Ala):将样品用0.2um微孔膜过滤,直接用Al-CAS-CPB法测定铝量。稳定单核铝(Alo):稳定的单核铝和不稳定的单核铝通过阳离子交换树脂分离。稳定单核铝通过阳离子树脂后,不能被树脂交换,用Al-CAS-CPB法可以直接流出液中铝量为Alo。不稳定单核铝(Alb)为Ala-Alo。在铝形态的分离过程中,我们使用了过滤和树脂交换二种分离方法。对此做了较详细的条件实验。研究了pH值对滤液中铝的影响,随pH值升高,滤液中铝量减小,这就说明,pH值升高,可能形成某些不能通过滤膜的形态,另外也可能是由膜吸附引起的。本文还比较了用静态平衡法和动态法阳离子交换分离稳定单核铝和不稳定单核铝,指出静态平衡法受到溶液pH值的制约,平衡所需时间过长,容易引起溶液中铝形态的变化和沾污,而动态法则能克服这些缺点,因此在实验中采用动态法。把形态分离的方法应用到土壤酸性浸提液中,结果表明,不稳定的单核铝形态(Alb)远远大于稳定的单核铝形态,而不稳定的单核铝形态中含有对植物的致毒因子,因而酸雨能导致森林死亡,农作物发育不良。
Resumo:
稀土对铝及铝合金具有很多良好作用。根据国内外有关铝合金发展趋势的报道,铝合金向中强高工艺高强耐热、超塑、微量元素改善合金性能等方向发展稀土在这些方面对铝合金有着很好的作用效果。因此研制新型铝合金,研究稀土对铝合金组织和性能的影响及稀土作用机现,有着重要的意义。稀土在铝合金中的应用已经引起了国内外研究工作者的关注。近几年此方面研究尤为活跃。我国是一个稀土蕴藏量较大的国家,研究稀土在铝合金中的作用,可以更好地发挥我国的资源优势,对国民经济的发展将起着重要的作用。有关稀土在铝合金中的应用研究,国外开展的较早。我国始于七十年代。合金工作者对稀土在铝合金中的作用进行了大量的研究,确认了稀土可以改善铝合金的组织和性能,改善工艺性能,表面光泽性和耐腐蚀性但是,目前的研究还没有形成系统和全面的理论,由于研究条件和目的不同,很多的研究还处于实验室阶段,对某些问题还研究得不够深入,不够全面。如:1. 稀土对金属铝组织和性能影响;2. 稀土对铝合金枝晶组织细化作用和晶体结构影响;3. 稀土如何改善铝合金的加工工艺性能,提高铝合金的成品率;4. 稀土对提高合金沉淀硬化速度,使GD区快速析出,时效峰提前;5. 铝热还原法,较低温度下制取铝稀土合金,特别是重稀土合金;6. 稀土铝合金的加工硬化过程研究;7. 稀土在变形铝合金中的存在状态和分布规律;基于上述问题和国内对铝合金的需求,本文主要做了如下几个方面的工作:1. 研制了RE-Al-Mg-Si挤压型材合金,稀土是采用向工业电解槽中加入混合稀土化合物同铝一起共电沉积,制取稀土铝合金,然后配制成RE-Al-Mg-Si合金。对其组织,晶体结构,性能,沉淀硬化过程等进行了研究得出如下结论:①. 稀土可使Al-Mg-Si合金强度提高10-20%,硬度提高10%左右;②. 稀土可以改善Al-Mg-Si合金的加工性能,在挤压温度下具有较大的高温塑性。稀土可使铝镁硅合金晶粒细化,再结晶温度和过烧温度提高,允许在较宽温度范围内进行热处理;③. 稀土可使Al-Mg-Si合金表面致密,光亮,改善耐腐蚀性和光学特性;④. 稀土可使铝基体晶胞体积减小,晶胞体积的减小值和强度、硬度提高成很好的直线关系。首次提出稀土对铝合金的“晶胞收缩效应”;⑤. 稀土在铝镁硅合金中分布规律是晶内晶界都有稀土存在,晶界多于晶内。稀土和Si,Fe等共存于晶界。⑥. 稀土可促使GP区快速析出,弥散的第二相质点在位错线上析出,起着钉扎位错,增大位错密度的作用,因而时效硬度提高,时效峰提前;为短时高温时效提供了实验依据;2.研制了RE-Al-Zn-Mg中强合金。稀土的加入是采用对掺法,对合金的组织、性能,加式硬化过程,时效工艺及稀土分布规律进行了研究,得出如下结论:①. 稀土可改善合金加工性能,尤其是高温延伸率,当稀土为0.489%时达到750%,是未加稀土的合金两倍多。该合金具有超塑性。②. 铸态或变形后,稀土对组织都有细化作用;③. 该合金加工硬化过程具有三个阶段,经过线性回归处理成很好的直线关系。④. 稀土可使Al-Zn-Mg合金的时效峰提前约4小时;⑤. 稀土合金的新相在位错密度线上析出,阻碍位错移动,使严结构组织保持较大的位错密度,从而改善合金性能;⑥. 该合金具有满意的强度,可适合挤压,轧制等变形加工。3. 研究了稀土对金属铝组织和性能的影响。用铝热还原法制得Al-RE合金。实现了较低温度下重稀土化合物的铝热还原。采用电解复膜工艺,制得金相样品;使合金的细节组织清晰可见。研究了组织和性能,得出如下结论:①. 稀土对铝的细化作用,枝晶细化更明显,这主要是稀土在铝中的溶质再分配,造成了结晶前沿的过冷区,使铝晶粒以树枝状晶长大,由于稀土元素在铝中的溶质分配系数不同而表现在细化晶粒方面有一定的差异;②. 稀土在铝中主要分布在晶界和枝晶界,晶内也有稀土存在;③. 稀土可以提高纯铝的机械性能和高温塑性;④. 通过铝热还原,可在较低温度不制得Dy、Eu、Gd、Y等重稀土铝合金。
Resumo:
国外早期曾用丁腈橡胶增韧环氧树脂。六十年代后,主要用端羧基丁腈共聚物(丁腈羧,CTBN)作为增韧剂增韧环氧树脂。但丁腈羧的合成方法中,引发剂引发效率很低,产品纯制比较麻烦,要使用较多溶剂,因此,成本较高。这是使用丁腈羧作为增韧剂的缺点。针对这种情况,朴光哲曾研究用丁腈羟增韧环氧树脂,方法是先将羟基转化成羧基后,,再用于增韧环氧树脂。使用丁腈羟作为增韧剂的原因是因为丁腈羟合成较易,是遥瓜型液体橡胶中价格较低的品种。我们认为,用丁腈羟增韧环氧树脂是适宜的,可以解决用丁腈羧作为增韧剂所存在的问题。但上述方法是经过端基转化,间接使用丁腈羟的方法。此论文的内容是研究直接使用丁腈羟作为增韧剂的方法。即略去端基转化过程,这样可以达到简化工艺的目地。另外,在固化体系中,增加酸酐用量。使酸酐既与丁腈羟反应,也与环氧基反应,又与仲羟基反应。这样有利于改进增韧环氧树脂的结构和性能。按照这种设想,设计了增韧环氧树脂固化体系。在此基础上,所进行的研究工作内容包括:1,固化反应动力学;2,固化物的力学性质;3,固化物的形态结构;4,固化物的TTT图;5,固化物的热分解。用示差扫描量热计及红外光谱对六氢邻苯二甲酸酐固化的增韧环氧树脂进行了固化反应动力学的研究,得到固化温度,固化时间和转化率的关系式为:1/0.2 [1/((1-P)~(0.2)) - 1] = kt其中,P为转率;K为表观反应速率常数;t为反应时间。通过此式,即可达到控制固化反应的目地。同时还得到该体系的固化速率主要决定于酸酐的扩散过程,其原因认为是由于固化反应过程中,微观凝聚相的形成。对不同固化体系增韧环氧树脂的力学性能研究表明。固化物性能的变化一般可分为增韧,增柔,相倒转三个阶段。丁腈羟增韧环氧树脂的增韧效果与所选固化剂种类,丁腈羟用量、丁腈羟中丙烯腈的含量有关。在所研究的酸酐固化体系中,以六氢邻苯二甲酸酐固化体系的增韧效果最好。从固化物的综合性能看,增韧剂用量以10~20份,丁腈羟中丙烯腈含量以15%左右为宜。丁腈羟用量为10份的增韧体系中,抗剪强度提高20%达27MPa,抗张强度提高41%,达80MPa。断裂伸长提高一倍,断裂功提高三倍,断裂表面能提高十倍。而杨氏模量仅降低7%倍。固化物各阶段的力学性能取决于固化物的形态结构。其形态结构与环氧树脂固化体系中各组分的相容性及固化速度密切相关。未增韧的环氧树脂是均相,增韧环氧树脂是两相结构。由橡胶微区和环氧基体组成,橡胶微区的大小和组成与丁腈羟用量,橡胶中丙烯腈含量,固化温度有关。随丁腈羟用量加大,橡胶微区增多,直径分布增大。用量增到一定程度,发生相倒转现象。固化剂不同,微区和基体的结构差异很大。六氢邻苯二甲酸酐,70酸酐,甲基四氢邻苯二甲酸酐固化体系的形态结构相似。甲基内次甲基四氢邻苯二甲酸酐固化体系的橡胶微区是由橡胶-环氧组成的橡胶富集相。桐油酸酐固化体系则有更小的橡胶微区出现。用扫辨仪研究了增韧和未增韧环氧树脂的等温固化过程。作出TTT图。得出两体系的固化行为相似,增韧环氧树脂的玻璃化曲线略有推迟,Tg_0 = -23 ℃, Tg_∞ = 85 ℃,(未增韧环氧树脂Tg_∞ = 88 ℃)。通过热重分析法研究以六氢邻苯二甲酸酐为固化剂的丁腈羟增韧环氧树脂在空气中分解的情况。起始分辨温度为250 ℃。表现活化能由180kJ/mol提高到280kJ/mol。分解过程中有一缓慢失重阶段,在酸酐用量较大的情况下,起始分解温度降低,说明增大酸酐用量并未提高固化物交联密度。总之,用丁腈羟直接增韧环氧树脂是一个适宜的增韧方法。解决了用丁腈羧作为增韧剂的缺点。为环氧树脂的增韧技术,增添了新的内容。
Resumo:
环糊精(CD)分子由于它独特的结构和卓越的模拟酶的性质,已引起人们极大的兴趣和关注。它通过与客体分子形成包接复合物,能影响和催化一些反应的进行。由于它的催化反应历程与酶的催化反应历程颇相似,因此,以环糊精模拟酶催化为探索酶反应机理提供了一个很好的方法。研究CD包络物的形成以及它们之间相互作用的规律,对CD在化学和生化研究中的应用具有重要意义。本文介绍了有关荧光的基本理论和几个荧光参数,较详细地介绍了新发展起来的测量荧光寿命的“时间相关单光子计数法”的原理和测量技术,描述了环糊精分子的结构及其特性。我们用吸收光谱法,稳态荧光法和时间分辨荧光法研究了一系例有机分与环糊精的络合过程。下面对各个体系作一简要描述。一、籍时间分辨荧光技术研究二氢苊,硝基苊,苊烯,荧蒽与环糊精的络合过程。通过测量这四种疏水分子与环糊精分子络合的荧光寿命,发现加入环糊精,苊烯和硝基苊的荧光寿命改变不大,而二氢苊和荧蒽的荧光寿命有明显增加。用双指数拟合分析出了单体和包络物的荧光寿命,并计算出了络合平衡常数。讨论了乙醇分子对络合作用的影响。发现加入乙醇能促进疏水分子与环糊精的络合作用。二、β-环糊精与1,2-苯并蒽等多核芳烃络合的荧光研究 首先我们测量了和3,4-苯并与β-CD络合的荧光寿命。发现加入β-CD后,它们的荧光光寿命都不发生改变。因此,可以认为它们不与β-CD形成包络物。我们详细研究了1,2-苯并蒽与β-CD络合的荧光寿命和荧光光谱,发现二者发生络合作用,并用稳态荧光光谱法计算出了其络合常数;又观察到环糊精能“屏蔽”碘离子对1,2-苯并蒽的淬灭;加入β-CD可使1,2-苯并蒽分子的聚集态向生成单体的方向移动。三、染料分子与β-CD络合的荧光寿命测量 测量了DT,OX-725,甲酚紫和丹酰四种分子在β-CD水溶液中的荧光寿命,发现随β-CD浓度变化,它们的荧光寿命没有明显的变化,可能是因为它们都是极度性分子,而β-CD腔内的极度性双很水的原故。四、结构相似的药物分子与β-CD络合的光谱研究测量了普鲁卡因,扑热息痛,乙酰苯胺与β-CD络合的吸光度和荧光光谱,发现三种分子都与β-CD发生络合作用,并用荧光光谱法计算出了络合平衡常数。还用色谱电化学方法研究了β-CD对普鲁卡因水解的影响。得出初步结论,β-CD能抑制普鲁卡因的水解。
Resumo:
掺稀土离子的碱土稀土复合氟化物和ABF_3钙钛矿型氟化物是重要的激光和发光材料。Eu(II)是重要的激活离子。利用Eu(II) d→f跃迁的宽带发射和f→f跃迁的锐线发射,Eu(II)作为短波紫外激光材料手荧光材料的激活剂是优良的候选新。因此,如能找到某种敏化剂对Eu(II)产生能量传递,提高d→f或f→f跃迁发射效率,那么对Eu(II)的潜在应用具有重要的实际和理论意义。人们对Eu(II) d-f、f-f跃迁性度和实现f-f跃迁的条件以及Eu(II)对其它离子的纯量传递已进行了许多深入的研究。然而,人们对其它离子对Eu(II)的纯量传递的研究和报道则甚少。本文从研究Eu(II)和Ce(III)在xMF_2-yYF_3 (M = Ca,Sr,Ba;x = 0,1,2,3;y = 0,1,2,3,4,5)和ABF_3(A = K~+,Ba~(2+);B = Mg~(2+),Ca~(2+),Li~+)两体系中的光谱变经规律入手,比较和分析了Eu(II)和Ce(III)的光谱行为及期 影响因素,特别是仔细地考察了氧对Eu(II)光谱的影响。通过比较和分析,指出Ce(III)对Eu(II)产生能量传递的可能性,寻求两新相互敏化的合适的基质。在复合氟化物体系中首次实现了Ce(III)对Eu(II)的能量传递。根据Dexter能量传递共振理论讨论和分析了Ce(III)对Eu(II)能量传递机理和可能传递途径,提出了能量传递模型,估算了各种传递过程的几率,获取了一些有益启示。同时,对Eu(II)和Tb(III)之间的能量传递也做了初步讨论。与某些基质中Tb(III)可对Ce(III)产生能量传递不同,在讨论体系中没有观察到Tb(III)对Eu(II)的能量传递。
Resumo:
本论文工作主要是关于光谱电化学与生物电化学一些基础理论方面的研究。在光谱电化学方面,它包括:1).对光谱电化学用于定量分析和理论进行了较系统的研究。2).将上述光谱电化学池用于阳极溶出分析,即将被测金属先沉积在电极表面进行富集,然后在有显色剂存在的情况下溶出,监测溶出过程中吸光度的变化进行定量测定。3).首次将上述光谱电化学池用于测定催化反应的速率常数,推导了其理论并采用亚铁氰化钾-抗坏血酸体系进行了实验验证。4).在平行催化和后行化学反应的光谱电化学研究中采用单电位跃-开路弛豫计时吸收法对平行催化体系进行测定,并从理论上进行推导,得到了一个新且简单并普遍适用的表达式,实验上得到了较好的结果,对后行反应也同样适用。5).对微柱碳纤维电极上的光谱电化学进行了研究,设计了光谱电化学池。6).采用循环伏安法和光谱电化学法研究了碱性溶液中铜电极的电化学行为。在生物电化学方面,主要是关于生物大分子如细胞色素C在修饰电极表面的直接电化学,它包括:1).研究了亚铁氰化钾、抗坏血酸在二硫代双(4-吡啶)修饰金电极上的电化学行为。2).研究了较高支持电解质溶液中细胞色素C的电化学行为。3).研究了低浓度支持电解质中细胞色素C的电化学行为。
Resumo:
近几年来超微电极技术发展极为迅速,它具有体积小,传质快,IR失真小,信噪比高等优点,适用于活体分析及高阻体系、电极过程动力学和快扫伏安等的研究,超微电极为在分子水平研究电化学提供了可能性,特别是最近将超微电极应用于扫描隧道显微镜和电化学显微镜,更体现了研究超微电极的重大意义,因此认识和研究超微电极的理论和应用是非常重要的。本工作从基础入手系统地做了以下几方面的工作:1.超微电极上均相催化反应理论及其应用。2.超微电极上的光谱电化学研究。3.氧化还原物质修饰超微盘电极理论和验证。4.超微电极非稳态计时电流法研究膜内物质扩散。5.高分子溶剂(PEO)中的固态电化学。6.超微电极在分析中的应用。
Resumo:
本论文分别研究了金属离子外层电子构型及其自旋状态、晶体结构、电负性、粒度以及稀土离子半径对化合物电学性质的影响。中心金属离子外层电子构型为nd~(1-9)的化合物,其电性与该离子d轨道上的电子数及其自旋状态有关。当d电子数为1、2、3、4、7、9时,化合物导电性强;当电子构型为nd~6、nd~8且处于高自旋时,化合物导电性强,低自旋时导电性差;当电子构型为nd~5且处理高自旋时,化合物导电性差,低自旋时导电性强。对于金属离子外层电子构型为ns~2np~6、nd~(10)的某些化合物,填隙金属缺陷导致化合物的高导电性。在晶体结构上,存在两种类型的导电通道:一是金属离子-阴离子共价键形成的连续链;一是连续排列的金属离子-金属离子直接作用。阴离子的电负性增大,化合物中载流子迁移率减小,化合物导电性降低。多晶粉末样品的导电性随粒度的变化有两种类型:随粒径的增大,导电性强的化合物电导率增大;导电性差的化合物电导率减小。超微粒子的导电活化能比非超微粒子的要小。稀土离子半径的变化影响化合物晶体结构和能带结构,从而引起稀土系列化合物电性的变化。
Resumo:
本论文通过一些小分子、原子及离子物种在电极界面上发生的有序吸附,成功地研究了这样的修饰界面对一些有机、无机及生物的电活性物种电子转移的影响。结果表明:1.在金表面上,碘原子的修饰对醌类物种的氧化还原行为的影响与在铂表面上全然相反,实验结果表明:在金、铂表面上不同的醌分子的吸附构象是导致这一相反结果的主要因素。2.在金表面上荷负电的硫离子修饰层能有效的固定一些荷正电的生物活性分子,并保持了其生物活性。对这一固定化的相互作用分析表明,配位相互作用起着主导作用。3.吡啶基化合物在能形成极好的有序单层膜,其上的醌功能端基对肼类化合物有着极好的电催化活性。本论文工作中将这一现象成功地应用于肼类化合物的电化学检测中。4.利用氨端基自组装膜在酸性条件下荷正电的特点,成功地将荷负电的杂多酸分子固定于其上,并基于此,通过荷正电的季胺化聚合物构造了多层的杂多酸修饰电极,实验结果确证了这一有序的多层膜结构。