287 resultados para vapor phase epitaxy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the influences of CCl4 on the metalorganic chemical vapor deposition (MOCVD) growth of InN were studied for the first time. It was found that the addition of CCl4 can effectively suppress the formation of metal indium (In) droplets during InN growth, which was ascribed to the etching effect of Cl to In. However, with increasing of CCl4 flow, the InN growth rate decreased but the lateral growth of InN islands was enhanced. This provides a possibility of promoting islands coalescence toward a smooth surface of the InN film by MOCVD. The influence of addition of CCl4 on the electrical properties was also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of In doped low-temperature (LT) AlGaN interlayer on the properties of GaN/Si(111) by MOCVD have been investigated. Using In doping LT-interlayer can decrease the stress sufficiently for avoiding crack formation in a thick (2.0 mu m) GaN layer. Significant improvement in the crystal and optical properties of GaN layer is also achieved. In doping is observed to reduce the stress in AlGaN interlayer measured by high-resolution X-ray diffraction (HRXRD). It can provide more compressive stress to counteract tensile stress and reduce crack density in subsequent GaN layer. Moreover, as a surfactant, indium is observed to cause an enhanced PL intensity and the narrowed linewidths of PL and XRD spectra for the LT-interlayer. Additionally, the crystal quality of GaN layer is found to be dependent on the growth parameters of underneath In-doped LT-AlGaN interlayer. The optimal parameters, such as TMIn flow rate, TMAl flow rates and thickness, are achieved to obtain nearly 2.0 mu m thick crack free GaN film with advanced optical and crystal properties. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations on photoluminescence properties of (11 (2) over bar0) GaN grown on (1 (1) over bar 02) Al2O3 substrate by metalorganic chemical-vapor deposition are reported. Several emission lines not reported before are observed at low temperature. The sharp peak at 3.359 eV is attributed to the exciton bound to the neutral acceptor. Another peak at 3.310 eV represents a free-to-bound, probably a free electron-to-acceptor, transition. The 3.241 and 3.170 eV lines are interpreted as phonon replica lines of the 3.310 eV line. The phonon energy is 70 meV, consistent with the energy of transverse optical E-1 phonon. The optical properties of the lines are analyzed. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method to form nanoscale InGaN quantum dots using MOCVD is reported, This method is much different from a method. which uses surfactant or the Stranski-Krastannow growth mode. The dots were formed by increasing the energy barrier for adatoms, which are hopping by surface passivation, and by decreasing the growth temperature. Thus, the new method can be called as a passivation-low-temperature method. Regular high-temperature GaN films were grown first and were passivated. A low-temperature thin layer of GaN dot was then deposited on the surface that acted as the adjusting layer. At last the high-density InGaN dots could be fabricated on the adjusting layer. Atomic force microscopy measurement revealed that InGaN dots were small enough to expect zero-dimensional quantum effects: The islands were typically 80 nm wide and 5 nm high. Their density was about 6 x 10(10) cm(-2). Strong photoluminescence emission from the dots is observed at room temperature, which is much stronger than that of the homogeneous InGaN film with the same growth time. Furthermore, the PL emission of the GaN adjusting layer shows 21 meV blueshift compared with the band edge emission of the GaN due to quantum confine effect. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surfactant effect of isoelectronic indium doping during metalorganic chemical vapor deposition growth of cubic GaN on GaAs (1 0 0) substrates was studied. Its influence on the optical properties and surface morphology was investigated by using room-temperature photoluminescence (PL) and atomic force microscopy. It is shown that the sample with small amount of In-doping has a narrower PL linewidth, and a smoother surface than undoped cubic GaN layers. A slight red shift of the near-band-edge emission peak was observed. These results revealed that, for small TMIn flow rates, indium played the role of the surfactant doping and effectively improved the cubic GaN film quality; for large TMIn flow rates, the alloying formation of Ga1-xInxN might have occurred. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epitaxial lateral overgrowth (ELO) of cubic GaN by metalorganic chemical vapor deposition has been performed on SiO2-patterned GaN laver. The mechanism of lateral overgrowth is studied It was found that the morphology of ELO GaN stripes strongly depended on the direction of stripe window openings, which was discussed based on the different growth rates of (1 1 1)A and (1 1 1)B. Under the optimized growth condition, single-phase cubic GaN was deposited successfully. The peak position of near-band emission in ELO GaN has a redshift of 13 meV compared with the conventionally grown sample, which may be due to the partial release of stress during the ELO process. (C) 2001 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature growth of cubic GaN at 520 degrees C was achieved using CCl4 as an additive by metalorganic chemical-vapor deposition (MOCVD) on GaAs substrate. X-Ray measurement confirmed that the films are single-phase cubic GaN. Scanning electron microscopy (SEM) and reflection high-energy electron diffraction (RHEED) were also used to analyze the surface morphology and the quality of films. The evolution of surface morphology suggests that CCl4 can reduce the hopping barrier and thus Ga adatoms are able to diffuse easily on the GaN surface. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crystalline beta-BBO thin films were successfully prepared on (001)-oriented Sr2+-doped alpha-BBO substrates by using liquid phase epitaxy, pulsed laser deposition and vapor transport equilibration techniques. The films were characterized by X-ray diffraction and X-ray rocking curve. The present results manifest that the beta-BBO thin films grown on Sr2+-doped alpha-BBO substrates have larger degree of orientation f value and smaller X-ray rocking curve FWHM than the ones grown on other reported substrates. Compared with other substrates, alpha-BBO has the similar structure, the same UV cutoff and the same chemical properties to beta-BBO. These results reveal that Sr2+-doped alpha-BBO single crystal may be a promising substrate proper to the growth of beta-BBO films.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crack-free GaN films have been achieved by inserting an Indoped low-temperature (LT) AlGaN interlayer grown on silicon by metalorganic chemical vapor deposition. The relationship between lattice constants c and a obtained by X-ray diffraction analysis shows that indium doping interlayer can reduce the stress in GaN layers. The stress in GaN decreases with increasing trimethylindium (TMIn) during interlayer growth. Moreover, for a smaller TMIn flow, the stress in GaN decreases dramatically when In acts as a surfactant to improve the crystallinity of the AlGaN interlayer, and for a larger TMIn flow, the stress will increase again. The decreased stress leads to smoother surfaces and fewer cracks for GaN layers by using an In-doped interlayer than by using an undoped interlayer. In doping has been found to enhance the lateral growth and reduce the growth rate of the c face. It can explain the strain relief and cracks reduction in GaN films. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrical properties of AlyGa1-yN/AlxGa1-xN/AlN/GaN structure are investigated by solving coupled Schrodinger and Poisson equation self-consistently. Our calculations show that the two-dimensional electron gas (2DEG) density will decrease with the thickness of the second barrier (AlyGa1-yN) once the AlN content of the second barrier is smaller than a critical value y(c), and will increase with the thickness of the second barrier (AlyGa1-yN) when the critical AlN content of the second barrier y(c) is exceeded. Our calculations also show that the critical AlN content of the second barrier y(c) will increase with the AlN content and the thickness of the first barrier layer (AlxGa1-xN).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of growth temperature on the bimodal size distribution of InAs quantum dots on vicinal GaAs(100) substrates grown by metal organic chemical vapor deposition are studied. An abnormal trend of the bimodal size evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then exhibits a sudden decrease at 535 degrees C. The trend is explained by taking into account the presence of multiatomic steps on the substrates. Photoluminescence (PL) studies show that quantum dots on vicinal substrates have a narrower PL linewidth, a longer emission wavelength, and a larger PL intensity than those of the dots with exact substrates. (c) 2006 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of GaAS(1 0 0)2 degrees substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

GaN intermedial layers grown under different pressures are inserted between GaN epilayers and AlN/Si(111) substrates. In situ optical reflectivity measurements show that a transition from the three-dimensional (3D) mode to the 2D one occurs during the GaN epilayer growth when a higher growth pressure is used during the preceding GaN intermedial layer growth, and an improvement of the crystalline quality of GaN epilayer will be made. Combining the in situ reflectivity and transmission electron microscopy (TEM) measurements, it is suggested that the lateral growth at the transition of growth mode is favourable for bending of dislocation lines, thus reducing the density of threading dislocations in the epilayer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transport phenomena in radial flow metalorganic chemical vapor deposition (MOCVD) reactor with three concentric vertical inlets are studied by two-dimensional numerical modeling. By varying the parameters such as gas pressure, flow rates combination of multi-inlets, geometric shapes and sizes of reactor and flow distributor, temperatures of susceptor and ceiling, and susceptor rotation, the corresponding velocity, temperature, and concentration fields inside the reactor are obtained; the onset and change of flow recirculation cells under influences of those parameters are determined. It is found that recirculation cells, originated from flow separation near the bend of reactor inlets, are affected mainly by the reactor height and shape, the operating pressure, the flow rates combination of multi-inlets, and the mean temperature between susceptor and ceiling. By increasing the flow rate of mid-inlet and the mean temperature, decreasing the pressure, maintaining the reactor height below certain criteria, and trimming the bends of reactor wall and flow distributor to streamlined shape, the recirculation cells can be minimized so that smooth and rectilinear flow prevails in the susceptor region, which corresponds to smooth and rectilinear isotherms and larger reactant concentration near the susceptor. For the optimized reactor shape, the reactor size can be enlarged to diameter D = 40 cm and height H = 2 cm without flow recirculation. The susceptor rotation over a few hundred rpm around the reactor central axis will induce the recirculation cell near the exit and deflect the streamlines near the susceptor, which is not the case for vertical reactors. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolution of carbonization process on Si as a function of ion dose has been carried out by mass-selected ion-beam deposition technique. 3C-SiC layer has been obtained at low ion dose, which has been observed by reflection high energy electron diffraction and X-ray photoelectron spectroscopy (XPS). The chemical states of Si and carbon have also been examined as a function of ion dose by XPS. Carbon enrichment was found regardless of the used ion dose here, which may be due to the high deposition rate. The formation mechanism of SiC has also been discussed based on the subplantation process. The work will also provide further understanding of the ion-bombardment effect. (C) 2001 Published by Elsevier Science B.V.