311 resultados para spin polarized gases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-dependent tunneling through a symmetric semiconductor barrier is studied including the k(3) Dresselhaus effect. The spin-dependent transmission of an electron can be obtained analytically. By comparing with previous work [Phys. Rev. B 67, 201304(R) (2003) and Phys. Rev. Lett. 93, 056601 (2004)], it is shown that the spin polarization and interface current are changed significantly by including the off-diagonal elements in the current operator, and can be enhanced considerably by the Dresselhaus effect in the contact regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal entanglement in a two-qubit Heisenberg XXZ spin chain is investigated under an inhomogeneous magnetic field b. We show that the ground-state entanglement is independent of the interaction of z-component J(z). The thermal entanglement at the fixed temperature can be enhanced when J(z) increases. We strictly show that for any temperature T and J(z), the entanglement is symmetric with respect to zero inhomogeneous magnetic field, and the critical inhomogeneous magnetic field b(c) is independent of J(z). The critical magnetic field B-c increases with the increasing parallel to b parallel to but the maximum entanglement value that the system can arrive at becomes smaller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength, and lateral diameter, while it shows nonmonotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAs quantum wires (QWRs) have been fabricated on the InP(001), which has been evidenced by TEM and polarized photoluminescence measurements (PPL). The monlayer-splitting peaks (MSPs) in the PL spectrum of InAs QWRs can be clearly observed at low temperature measurements. Supposing a peak-shift of MSP identical to that of bulk material, we obtain the thermal activation energies of up to 5 MSPs. The smaller thermal activation energies for the MSPs of higher energy lead to the fast red-shift of PL peak as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submicron Hall magnetometry has been demonstrated as an efficient technique to probe extremely weak magnetic fields. In this letter, we analyze the possibility of employing it to detect single electron spin. Signal strength and readout time are estimated and discussed with respect to a number of practical issues. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal entanglement in a two-qubit Spin-1 system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement exists and is symmetric for both ferromagnetic and antiferromagnetic exchange couplings. Moreover, the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have proposed a device, a superconducting-lead/quantum-dot/normal-lead system with an ac voltage applied on the gate of the quantum dot induced by a microwave, based on the one-parameter pump mechanism. It can generate a pure charge- or spin-pumped current. The direction of the charge current can be reversed by pushing the levels across the Fermi energy. A spin current arises when a magnetic field is applied on the quantum dot to split the two degenerate levels, and it can be reversed by reversing the applied magnetic field. The increase of temperature enhances these currents in certain parameter intervals and decreases them in other intervals. We can explain this interesting phenomenon in terms of the shrinkage of the superconducting gap and the concepts of photon-sideband and photon-assisted processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of spin-dependent tunneling through a nonmagnetic semiconductor double-barrier structure is studied including the k(3) Dresselhaus spin orbit coupling is solved by the time-dependent Schrodinger equation with a developed method for the finite-difference relaxation. The resonant peak and quasibound level lifetime are determined by the in-plane wave vector and the applied electric field. The buildup time and decay lifetime of resonant probability amplitude are different for the spin-down and spin-up electrons due to the Dresselhaus spin-orbit coupling. Further investigation shows that the steady spin-polarization in both the well and collector regions has been obtained in the time domain. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The admixture of linear and circular photogalvanic effects and (CPGEs) in AlxGa1-xN/GaN heterostructures has been investigated quantitatively by near-infrared irradiation at room temperature. The spin-based photocurrent that the authors have observed solidly indicates the sizable spin-orbital interaction of the two-dimensional electron gas in the heterostructures. Further analysis shows consistency between studies by optical and magnetic (Shubnikov de-Haas) measurements on the spin-orbital coupling effects among different AlxGa1-xN/GaN heterostructures, indicating that the CPGE measurement is a good way to investigate the spin splitting and the spin polarization in semiconductors. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using time-resolved photoluminescence and time-resolved Kerr rotation spectroscopy, we explore the unique electron spin behavior in an InAs submonolayer sandwiched in a GaAs matrix, which shows very different spin characteristics under resonant and non-resonant excitations. While a very long spin relaxation lifetime of a few nanoseconds at low temperature is observed under non-resonant excitation, it decreases dramatically under resonant excitation. These interesting results are attributed to the difference in electron-hole interactions caused by non-geminate or geminate capture of photo-generated electron-hole pairs in the two excitation cases, and provide a direct verification of the electron-hole spatial correlation effect on electron spin relaxation. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By employing non-equilibrium Green's function method, the mesoscopic Fano effect modulated by Rashba spin-orbit (SO) coupling and external magnetic field has been elucidated for electron transport through a hybrid system composed of a quantum dot (QD) and an Aharonov-Bohm (AB) ring. The results show that the orientation of the Fano line shape is modulated by the Rashba spin-orbit interaction k(R)L variation, which reveals that the Fano parameter q will be extended to a complex number, although the system maintains time-reversal symmetry (TRS) under the Rashba SO interaction. Furthermore, it is shown that the modulation of the external magnetic field, which is applied not only inside the frame, but also on the QD, leads to the Fano resonance split due to Zeeman effect, which indicates that the hybrid is an ideal candidate for the spin readout device. (C) 2007 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using time-resolved photoluminescence and time-resolved Kerr rotation, we have studied the unique electron spin dynamics in InAs monolayer (ML) and submonolayer (SML), which were sandwiched in GaAs matrix. Under non-resonant excitation, the spin relaxation lifetimes of 3.4 ns and 0.48 ns were observed for 1/3 ML and I ML InAs samples, respectively. More interestingly, the spin lifetime of the 1/3 ML InAs decreased dramatically under resonant excitation, down to 70 ps, while the spin lifetime of the 1 ML sample did not vary much, changing only from 400 to 340 ps. These interesting results come from the different electron-hole interactions caused by different spatial electron-hole correlation, and they provide a direct evidence of the dominant spin relaxation process, i.e. the BAP mechanism. Furthermore, these new results may provide a valuable enlightenment in controlling the spin relaxation and in seeking new material systems for spintronics application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unique spin splitting behaviors in ultrathin InAs layers, which show very different spin splitting characteristics between the InAs monolayer (ML) and submonolayer (SML) have been observed. While distinct spin splitting is observed in an InAs ML, no visible spin splitting is found in a 1/3 ML InAs SML. In addition, the spin relaxation time in the 1/3 ML InAs is found to be much longer than that in the 1 ML sample. These results are in good agreement with the theoretical prediction that the interexcitonic exchange interaction plays a dominant role in energy splitting, while the intraexciton exchange interaction controls the spin relaxation. (c) 2007 American Institute of Physics.