244 resultados para circular waveguide photodetector


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor microlasers with an equilateral triangle resonator (ETR) and an output waveguide are proposed and analyzed by the finite-difference time-domain technique and the Pade approximation. The numerical results show that microlasers with an output waveguide still have a high-quality factor (Q factor) and are suitable to realize directional emission. For the ETR with a 0.46-mum-width opening in one of the vertices connected to the output waveguide, we have the Q factor of 1.5x10(3) and 2.5x10(2) for the TM fundamental mode at the wavelength of 1.55 mum, as the side length of the ETR is 5 and 3 mum. The simulated intensity distributions are presented for the fundamental mode in the ETR with a side length of 3 mum and an opening of 0.23 mum. (C) 2000 American Institute of Physics. [S0003-6951(00)01749-6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A InGaAsP/InP self-aligned, native oxidized buried heterostructure (BH) distributed feedback (DFB) laser is proposed. It is as easy to process as the ridge waveguide DFB laser and has superior performance. The current aperture can be easily controlled without selective regrowth. The laser exhibits a low threshold of 5.0 mA with 36 dB side mode suppression ratio at the emission wavelength of 1.562 mu m. It emits in a single lobe with full width at half maximum angles of 33.6 degrees and 42.6 degrees for the lateral and vertical fields, respectively. Its beam is more circular than that of the as-grown BH laser because the lower refractive index of oxide compared to the as-grown layer and results in a larger lateral optical confinement. Its characteristic temperature (T-0) is 50 K at room temperature but increases in value at the higher temperature range. (C) 2000 American Institute of Physics. [S0003-6951(00)00812-3].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semiconductor photonics and optoelectronics which have a great significance in the development of advanced high technology of information systems will be discussed in this paper. The emphasis will be put on the recent research carried out in our laboratory in enhanced luminescence from low dimensional materials such as SiGe/Si and Er-doped Si-rich SiO2/Si and Er-doped SixNy/Si. A ring shape waveguide structure, used to promote the effective absorption coefficient in PIN photodetector for 1.3 mu m wavelength and a resonant cavity enhanced structure, used to improve the quantum efficiency and response in heterostructure photo-transistor (HPT), are also proposed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InGaAs/GaAs quantum dots (QDs) superlattice grown by molecular beam epitaxy (MBE) at different substrate temperatures for fabricating 8-12 mu m infrared photodetector were characterized by transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL). High-quality QDs superlattice can be achieved by higher growth temperature. Cross-sectional TEM shows the QDs in the successive layers are vertically aligned along growth direction. Interaction of partial vertically aligned columns leads to a perfect vertical ordering. With increasing number of bilayers, the average QDs size becomes larger in height and rapidly saturates at a certain value, while average lateral length nearly preserves initial size. This change leads to the formation of QDs homogeneous in size and of a particular shape. The observed self-organizations are attributed to the effect of strain distribution at QDs on the kinetic growth process. DCXRD measurement shows two sets of satellite peaks which corresponds to QDs superlattice and multi quantum wells formed by the wetting layers. Kinematical simulations of the wetting layers indicate that the formation of QDs is associated with a decrease of the effective indium content in the wetting layers. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single point defect microcavity possesses only the degenerate dipole modes under certain photonic crystal structure parameters. By deforming lattice structure, the degeneracy of the dipole modes has been broken. Theoretical simulation shows the large splitting of 65nm between the splitted x-mode and y-mode, approximate to the luminescent gain spectrum, which benefits for the single mode lasing. Experimentally the single dipole mode lasing, y-mode, is achieved in the deformed microcavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a novel InP-based, ridge-waveguide photonic integrated circuit (PIC), which consists of a 1.1-um wavelength Y-branch optical waveguide with low loss and improved far field pattern and a 1.3-um wavelength strained InGaAsP-InP multiple quantum-well superluminescent diode, with bundle integrated guide (BIG) as the scheme for monolithic integration. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10 mW at 120 mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than I dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x8 degrees, resulting in good fiber coupling. The compactness, simplicity in fabrication, good superluminescent performance, low transmission loss and estimated low coupling loss prove the BIG and Y-branch method to be a feasible way for integration and make the photonic integrated circuit of Y-branch and superluminescent diode an promising candidate for transmitter and transceiver used in fiber optic gyroscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submicrometer channel and rib waveguides based on SOI (Silicon-On-Insulator) have been designed and fabricated with electron-beam lithography and inductively coupled plasma dry etching. Propagation loss of 8.39dB/mm was measured using the cut-back method. Based on these so-called nanowire waveguides, we have also demonstrated some functional components with small dimensions, including sharp 90 degrees bends with radius of a few micrometers, T-branches, directional couplers and multimode interferometer couplers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel optical fiber-to-waveguide coupler for integrated optical circuits. The proper materials and structural parameters of the coupler, which is based on a slot waveguide, are carefully analyzed using a full-vectorial three dimensional mode solver. Because the effective refractive index of the mode in a silicon-on-insulator-based slot waveguide can be extremely close to that of the fiber, a highly efficient fiber-to-waveguide coupling application can be realized. For a TE-like mode, the calculated minimum mismatch loss is about 1.8dB at 1550nm, and the mode conversion loss can be less than 0.5dB. The discussion of the present state-of-the-art is also involved. The proposed coupler can be used in chip-to-chip communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present detail design considerations and simulation results of a forward biased carrier injection p-i-n modulator integrated on SOI rib waveguides. To minimize the free carrier absorption loss while keeping the comparatively small lateral dimensions of the modulator as required for high speed operation, we proposed two structural improvements, namely the double ridge (terrace ridge) structure and the isolating grooves at both sides of the double ridge. With improved carrier injection and optical confinement structure, the simulated modulator response time is in sub-ns range and absorption loss is minimized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A subretinal implant device, Micro Photo Diode Array, which can partly imitate the function of photoreceptor cells, was presented. Process to fabricate the MPDA and characteristics of the MPDA in vivo were described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characteristics of microring/racetrack resonators, in submicron SOI rib waveguides, have been investigated. The effects of waveguide dimensions, coupler design, roughness, and oxide cladding are considered. Moreover, guided mode, loss and dispersion of such waveguides are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The guide mode whose frequency locates in the band edge in photonic crystal single line defect waveguide has very low group velocity. So the confinement and gain of electromagnetic field in the band edge are strongly enhanced. Photonic crystal waveguide laser is fabricated and the slow light phenomenon is investigated. The laser is pumped by pulsed pumping light at 980nm whose duty ratio is 0.05%. The active layer in photonic crystal slab is InGaAsP multiple quantum well. Light is transimited by a photonic crystal chirp waveguide in one facet of the laser. Then the output light is coupled to a fiber and the character of laser is analysis by an optical spectrometer. It is found that single mode and multimode happens with different power of pumping light. Meanwhile the plane wave expansion and finite-difference time-domain methods are used to simulate the phenomenon of slow light. And the result of the experiment is compared with the theory which proves the slow light results in lasing oscillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Schottky-based metal-semiconductor-metal photodetector is fabricated on 1 mu m-thick, crack-free GaN on Si (I 11) substrate using an optimized AlxGal-xN/AlN complex buffer layer. It exhibits a high responsivity of 4600A/W at 366nm which may be due to both a crack-free sample and high internal gain. The relationship between responsivity and bias voltage is also investigated. The experiment results indicate that the responsivity increases with the bias voltage and shows a tendency to saturate. (c) 2007 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A SOI-based thermo-optic waveguide switch matrix worked at 1.55 mu m, integrated with spot size converters is designed and fabricated for the first time. The insertion loss and polarization dependent loss are less than 13dB and 2dB, respectively. The extinction ratio is larger than 19dB. The response time is less than 5 mu s and the power consumption of the switch cell is about 200mW.