171 resultados para Styrene-butadiene rubber.
Resumo:
Titania-silica (Ti/SiO2) and silica-titania-silica (Si/Ti/SiO2) catalysts were:prepared by chemical grafting using TiCl4 and tetraethyl orthosilicate (TEOS) as precursors and SiO2 as support. The prepared catalysts were characterized by UV Raman and visible Raman spectroscopies, XRD and the epoxidation of styrene; Ti/SiO2: catalyst grafted with only titanium species is not very active for epoxidation using H2O2 (30%), but is active and-selective when one uses tert-butyl hydroperoxide (TBHP). The catalyst grafted at high temperatures shows better epoxide selectivity. Si/Ti/SiO2 catalyst, the titanium-silica grafted further with TEOS, is active and selective for the epoxidation of styrene using either dilute H2O2 or TBHP, possibly due to the fact that the grafting of Ti/SiO2 with TEOS modifies the coordination structure of titanium and makes the titanium sites of Si-O-Ti-O-Si species less hydrophilic. A characteristic band at 1085cm(-1) due to Ti-O-Si species is detected for the grafted catalysts by UV resonance Raman spectroscopy. Reaction between TiCl4 and SiO2 at high temperatures favors the formation of Ti-O-Si species. Better activity and selectivity to epoxide,is found for the catalysts with more Ti-O-Si species. It is assumed that the active sites are the highly isolated Ti-O-Si species. For Si/Ti/SiO2 catalyst, the gas phase O-2 can participate in the catalytic oxidation of styrene when H2O2 is present ana:ii causes the formation of benzaldehyde. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new kind of monolithic capillary electrochromatography column with poly(styrene-co-divinylbenzene-co-methacrylic acid) as the stationary phase has been developed. The stationary phase was found to be porous by scanning electron microscopy and the composition of the continuous bed was proved by IR spectroscopy to be the ternary polymer of styrene, divinylbenzene, and methacrylic acid. The effects of operating parameters, such as voltage, electrolyte, and organic modifier concentration in the mobile phase on electroosmotic flow were studied systematically, The retention mechanism of neutral solutes on such a column proved to be similar to that of reversed-phase high performance liquid chromatography. In addition, fast analyses of phenols, chlorobenzenes, anilines, isomeric compounds of phenylenediamine and alkylbenzenes within 4.5 min were achieved.
Resumo:
Effects of various kinds of additives as well as aging of the catalyst on the polymerization of styrene catalyzed by TiCl4/MgCl2-AlEt3 system have been studied. Experiments show that in toluene the isotacticity of polystyrene can be up to 83% for aged catalyst, whereas when the catalyst is not aged. non-stereospecific polymer is the main product. When PCl3 is used as an additive, the catalyst system gives high activity and isotacticity. The use of a mixture of AlEt3/H2O (1: 1 mole ratio) as a cocatalyst is also efficient. The catalyst [TiCl4-PCl3/MgCl2-AlEt3/H2O] displays high activity and product isotacticity (94%) with an average molecular weight up to 2 X 10(-6). When Co(acac)(3) is added to to [TiCl4/MgCl2-AlEt3] catalyst after it was aged, the isotacticity can be up to 97%. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Inexpensive and permanently modified poly(methyl methacrylate)(PMMA) microchips were fabricated by an injection-molding process. A novel sealing method for plastic microchips at room temperature was introduced. Run-to-run and chip-to-chip reproducibility was good, with relative standard deviation values between 1-3% for the run-to-run and less than 2.1% for the chip-to-chip comparisons. Acrylonitrile-butadiene-styrene (ABS) was used as an additive in PMMA substrates. The proportions of PMMA and ABS were optimized. ABS may be considered as a modifier, which obviously improved some characteristics of the microchip, such as the hydrophilicity and the electro-osmotic flow (EOF). The detection limit of Rhodamine 6G dye for the modified microchip on the home-made microchip analyzer showed a dramatic 100-fold improvement over that for the unmodified PMMA chip. A detection limit of the order of 10(-20) mole has been achieved for each injected phiX-174/HaeIII DNA fragment with the baseline separation between 271 and 281 bp, and fast separation of 11 DNA restriction fragments within 180 seconds. Analysis of a PCR product from the tobacco ACT gene was performed on the modified microchip as an application example.
Resumo:
The epoxidation of styrene catalyzed by a reaction-controlled phase transfer catalyst [(C18H37(30%)+C16H33(70%))N(CH3)(3))(3)](3)-[PW4O16] with H2O2 in a biphasic medium was investigated. Under certain conditions, the selectivity for styrene oxide was 95%, the conversion of styrene based on H2O2 was 85%, and the reaction time was less than 1 h. During the reaction, this catalyst powder formed soluble active species by the action of H2O2, was recovered as a precipitate, and was reused after H2O2 was used up. After two times recycling, the catalyst kept almost the same activity.
Resumo:
A novel poly sulfone/polyethylene oxide/silicone rubber (PSOPEO/SR) multilayer composite membrane was fabricated by double coating polysulfone substrate membrane with polyethylene oxide and silicone rubber. Gas permeation experiments were performed at 30 degrees C for hydrogen and nitrogen. PSf(PEO/SR membrane displayed high and steady performance for H-2/N-2: permeances of H-2 and N-2 of 49.51 and 0.601 GPU, respectively, and H-2/N-2 ideal separation factor of 82.3. It was explained that layer interfaces due to the introduction of PEO layer act as the permselective media and are responsible for the higher H-2/N-2 ideal separation factor which has exceeded the intrinsic permselectivities of the three polymers used in this study. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The kinetic studies of the acrylic octadecyl ester and styrene polymerization in microemulsion systems, (1) cetyl pyridine bromide (CPDB)/t-butanol/styrene/water; (2) CPDB/t-butanol/toluene + acrylic octadecyl ester (1:1, w/v)/ water; (3) cetyl pyridine bromide/styrene/formamide, were made by using dynamic laser light scattering techniques (DLS). The mechanisms of nucleation of latex particles were discussed. The most possible nucleation location of the styrene and acrylic octadecyl ester microlatex particles in aqueous microemulsion system is in aqueous phase via homogeneous nucleation. Meanwhile, parts of microlatex particles are possibly produced via swollen micelles (microemulsions) and monomer droplets nucleation. On the other hand, the most possible nucleation location of the styrene microlatex particles in nonaqueous microemulsion system is inside monomer droplets. The relationship between the amount of monomer and the size of microlatex was also investigated. It has been found that the size of microlatex particles could be controlled by changing the amount of monomer. (C) 2002 Elsevier Science B.V. All rights reserved.