158 resultados para Quantum spin Hall insulator


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The valence hole subbands, TE and TM mode optical gains, transparency carrier density, and radiative current density of the zinc-blende GaN/Ga0.85Al0.15N strained quantum well (100 Angstrom well width) have been investigated using a 6 X 6 Hamiltonian model including the heavy hole, Light hole, and spin-orbit split-off bands. At the k = 0 point, it is found that the light hole strongly couples with the spin-orbit split-off hole, resulting in the so+lh hybrid states. The heavy hole does not couple with the light hole and the spin-orbit split-off hole. Optical transitions between the valence subbands and the conduction subbands obey the Delta n=0 selection rule. At the k not equal 0 points, there is strong band mixing among the heavy hole, light hole, and spin-orbit split-off hole. The optical transitions do not obey the Delta n=0 selection rule. The compressive strain in the GaN well region increases the energy separation between the so1+lh1 energy level and the hh1 energy level. Consequently, the compressive strain enhances the TE mode optical gain, and strongly depresses the TM mode optical gain. Even when the carrier density is as large as 10(19) cm(-3), there is no positive TM mode optical gain. The TE mode optical gain spectrum has a peak at around 3.26 eV. The transparency carrier density is 6.5 X 10(18) cm(-3), which is larger than that of GaAs quantum well. The compressive strain overall reduces the transparency carrier density. The J(rad) is 0.53 kA/cm(2) for the zero optical gain. The results obtained in this work will be useful in designing quantum well GaN laser diodes and detectors. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structures of the zinc-blende GaN/Ga0.85Al0.15N compressively strained superlattices and quantum wells are investigated using a 6 x 6 Hamiltonian model (including the heavy hole, light hole and spin-orbit splitting band). The energy bands, wavefunctions and optical transition matrix elements are calculated. It is found that the light hole couples with the spin-orbit splitting state even at the k=0 point, resulting in the hybrid states. The heavy hole remains a pure heavy hole state at k=0. The optical transitions from the hybrid valence states to the conduction states are determined by the transitions of the light hole and spin-orbit splitting states to the conduction states. The transitions from the heavy hole, light hole and spin-orbit splitting states to the conduction states obey the selection rule Delta n=0. The band structures obtained in this work will be valuable in designing GaN/GaAlN based optoelectronic devices. (C) 1996 Academic Press Limited

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the valence subbands of the zinc-blende GaN/Ga0.85Al0.15N strained quantum wells obtained by a 6x6 Hamiltonian (including heavy hole, light hole and spin-orbit splitting band), optical gain and radiative current density are calculated for the strained quantum well laser structures. The compressive strain in the GaN well region strongly depresses the TM mode optical gain and enhances the TE mode optical gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically study the electronic structure, spin splitting, effective mass, and spin orientation of InAs nanowires with cylindrical symmetry in the presence of an external electric field and uniaxial stress. Using an eight-band k center dot p theoretical model, we deduce a formula for the spin splitting in the system, indicating that the spin splitting under uniaxial stress is a nonlinear function of the momentum and the electric field. The spin splitting can be described by a linear Rashba model when the wavevector and the electric field are sufficiently small. Our numeric results show that the uniaxial stress can modulate the spin splitting. With the increase of wavevector, the uniaxial tensile stress first restrains and then amplifies the spin splitting of the lowest electron state compared to the no strain case. The reverse is true under a compression. Moreover, strong spin splitting can be induced by compression when the top of the valence band is close to the bottom of the conductance band, and the spin orientations of the electron stay almost unchanged before the overlap of the two bands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charge transfer due to collisions of ground state O3+ (2s(2)2p P-2) ions with molecular hydrogen is investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method, and electronic and vibrational state-selective cross sections along with the corresponding differential cross sections are calculated for projectile energies of 100, 500, 1000 and 5000 eV/u at the orientation angles of 25 degrees,45 degrees and 89 degrees. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations were obtained with the spin-coupled valence-bond approach. The infinite order sudden approximation (IOSA) and the vibrational sudden approximation (VSA) are utilized to deal with the rotation of H-2 and the coupling between the electron and the vibration of H-2. It is found that the distribution of vibrationally resolved cross sections with the vibrational quantum number upsilon' of H-2(+) (upsilon') varies with the increment of the projectile energy; and the electronic and vibrational stateselective differential cross sections show similar behaviors: there is a highest platform within a very small scattering angle, beyond which the differential cross sections decrease as the scattering angle increases and lots of oscillating structures appear, where the scattering angle of the first structure decreases as E-P(-1/2) with the increment of the projectile energy E-P; and the structure and amplitude of the differential cross sections are sensitive to the orientation of molecule H-2, which provides a possibility to identify the orientations of molecule H-2 by the vibrational state-selective differential scattering processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy difference DeltaE between the spin-allowed and spin-forbidden states of Tb3+ in crystals is studied. The environmental factor he representing the character of the host is redefined by using the chemical band of complex crystals. The relationship between h(e) and DeltaE is found to be a linear relation. The results show that the energy difference between the spin-forbidden and spin-allowed states for Tb3+ ions in crystals can be predicted from the environmental factor.