232 resultados para Effective mass (Physics)
Resumo:
With contributions from both three-dimensional (3D) electrons in heavily doped contacts and 2D electrons in the accumulation layer, a self-consistent calculation based on effective mass theory is presented for studying the anomalous behaviour of the quasi-bound levels in the accumulation layer and that in the central well of an asymmetric double barrier structure (DBS). By choosing the thickness of the incident barrier properly, it is revealed that these two quasi-bound levels may merge into a unique bound level in the off-resonance regime which shows a very good 2D nature in contrast to the conventional picture for level crossing. An evident intrinsic I-V bistability is also shown. It is noticeable that the effect of charge build-up in the central well is so strong that the electric field in the incident barrier even decreases when the applied bias increases within the resonant region.
Resumo:
The electronic properties of wide energy gap zinc-blende structure GaN, AlN and their alloys Ga1-xAlxN are investigated using the empirical pseudopotential method. Electron and hole Effective mass parameters, hydrostatic and shear deformation potential constants of the valence band at Gamma and those of the conduction band at Gamma and X are obtained. The energies of Gamma, X, L conduction valleys of Ga1-xAlxN alloy versus Al fraction x are also calculated. The information will be useful for the design of lattice mismatched heterostructure optoelectronic devices in the blue light range.
Resumo:
The linear-polarization optical property of CdSe quantum rods is studied in the framework of effective-mass envelope function theory.The effects of shape and magnetic field on the linear polarization factors are investigated.It is found that CdSe quantum spheres have negative polarization factors (xy-polarized emission)and quantum long rods with small radius have positive linear polarization factors (z-polarized emission).The z-direction is the direction of the c axis.Quantum long rods with large radius have negative linear polarization factors,due to the hexagonal crystal symmetry and the crystal field splitting energy.The linear polarization factors decrease and may change from a positive value to a negative value;i.e.,the z-polarized emissions decrease relative to xy-polarized emissions as the magnetic field applied along the z direction increases.
Resumo:
The stress and strain fields in self-organized growth coherent quantum dots (QD) structures are investigated in detail by two-dimension and three-dimension finite element analyses for lensed-shaped QDs. The nonobjective isolate quantum dot system is used. The calculated results can be directly used to evaluate the conductive band and valence band confinement potential and strain introduced by the effective mass of the charge carriers in strain QD.
Resumo:
The theoretical optimization of tensile strained InGaAsP/InGaAsP MQW for 1.5μm window polarization-independent semiconductor optical amplifier is reported. The valence-band structure of the MQw is calculated by using K·P method, in which 6×6 Luttinger effective-mass Hamiltonian is taken into account. LThe polarization dependent optical gain is calculated with various well width, strain, and carrier density.
Resumo:
Semiconductor nanostructures show many special physical properties associated with quantum confinement effects, and have many applications in the opto-electronic and microelectronic fields. However, it is difficult to calculate their electronic states by the ordinary plane wave or linear combination of atomic orbital methods. In this paper, we review some of our works in this field, including semiconductor clusters, self-assembled quantum dots, and diluted magnetic semiconductor quantum dots. In semiconductor clusters we introduce energy bands and effective-mass Hamiltonian of wurtzite structure semiconductors, electronic structures and optical properties of spherical clusters, ellipsoidal clusters, and nanowires. In self-assembled quantum dots we introduce electronic structures and transport properties of quantum rings and quantum dots, and resonant tunneling of 3-dimensional quantum dots. In diluted magnetic semiconductor quantum dots we introduce magnetic-optical properties, and magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The hole effective-mass Hamiltonian for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN and AlxGa1-xN are given. Besides the asymmetry in the z and x, y directions, the linear term of the momentum operator in the Hamiltonian is essential in determining the valence band structure, which is different from that of the zinc-blende structure. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor for wurtzite GaN are 20 and 131, 97 meV, respectively, which are inconsistent with the recent experimental results. It is proposed that there are two kinds of acceptors in wurtzite GaN. One kind is the general acceptor such as C, substituting N, which satisfies the effective-mass theory, and the other includes Mg, Zn, Cd etc., the binding energy of which deviates from that given by the effective-mass theory. Experimentally, wurtzite GaN was grown by the MBE method, and the PL spectra were measured. Three main peaks are assigned to the DA transitions from the two kinds of acceptor. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material. The binding energy of acceptor in ALN is about 239, 158 meV, that in AlxGa1-xN alloys (x approximate to 0.2) is 147, 111 meV, close to that in GaN. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Within the isospin-dependent Brueckner framework, we investigate the contribution of three-body force ( TBF) rearrangement to isospin symmetry potential as well as its momentum and density dependence. In particular, we investigate the TBF rearrangement effects on the isospin splitting of neutron and proton effective masses in neutron-rich nuclear matter. We show that the rearrangement contribution of TBF to neutron and proton single-particle potentials is repulsive and increases rapidly with increasing density and momentum. At low densities, the influence of the TBF rearrangement on symmetry potential is rather small, and the TBF rearrangement effect becomes more and more pronounced as the density rises. At high densities, the contribution of TBF rearrangement increases considerably the symmetry potential and modifies remarkably the momentum dependence of the symmetry potential. In both cases with and without including the TBF rearrangement contribution, the predicted neutron effective mass in neutron-rich matter is greater than the proton effective mass. The TBF rearrangement effect is to decrease remarkably both the proton and neutron effective masses, and reduce the magnitude of neutron-proton effective mass splitting in neutron-rich matter at high densities.
Resumo:
We extend the Brueckner-Hartree-Fock (BHF) approach to include the three-body force (TBF) rearrangement contribution in calculating the neutron and proton single particle (s.p.) properties in isospin asymmetric nuclear matter. We investigate the TBF rearrangement effect on the momentum-dependence of neutron and proton s.p. potentials, the isospin splitting and especially its density dependence of the neutron and proton effective masses, and the isospin symmetry potential in neutron-rich nuclear matter by adopting the realistic Argonne V-18 two-body nucleon-nucleon interaction supplemented with a microscopic TBF. We find that at low densities, the TBF rearrangement effect is fairly weak, whereas the TBF induces a significant rearrangement effect on the s.p. properties at high densities and large momenta. The TBF rearrangement contribution to s.p. potential is shown to be repulsive, and it reduces considerably the attraction of the BHF s.p. potential. The repulsion from the TBF rearrangement turns out to be strongly momentum dependent at high densities and high momenta. As a consequence, it enhances remarkably the momentum dependence of the proton and neutron s.p. potentials and reduces the neutron and proton effective masses. At low densities, the TBF rearrangement effect on symmetry potential is almost negligible, while at high densities, it enlarges sizably the symmetry potential. At high enough densities, it may even change the high-momentum behavior of symmetry potential. In both cases, with and without including the TBF rearrangement contribution, the predicted neutron effective mass is larger than the proton one in neutron-rich matter within the BHF framework; i.e., the predicted isospin splitting of the proton and neutron effective masses in neutron-rich matter is such that m(n)(*)>= m(p)(*), in agreement with the recent Dirac-BHF predictions. The TBF rearrangement contribution reduces remarkably the magnitude of the proton-neutron effective mass splitting at high densities. At high enough densities, inclusion of the TBF rearrangement contribution even suppresses almost completely the effective mass splitting.
Resumo:
本论文介绍了国内外对K介子介质效应的研究现状,着重讲述了相对论平均场理论对于高密核物质的研究现状和方法。 同时运用扩展的相对论平均场模型对K介子的有效质量进行了研究,并与其它模型的计算结果作了比较。 在Schaffner相对论平均场模型的框架基础上, 考虑同位旋矢量介子δ, 扩展了强子动力学模型和单玻色子交换K介子模型, 研究了奇异核物质中K介子的有效质量, 发现在奇异核物质中K介子的有效质量随密度的变化比在纯核子物质中的变化小。 同位旋矢量介子δ对在奇异核物质中K介子有效质量随密度变化有明显的影响, 但对不同的参数组, 其影响的大小不同。 由于引入新的δ介子,引起了重子与介子以及δ介子与其他介子的耦合系数的变化,因此我们做了相应的修正
Resumo:
The natural frequencies of a cantilever probe can be tuned with an attached concentrated mass to coincide with the higher harmonics generated in a tapping-mode atomic force microscopy by the nonlinear tip-sample interaction force. We provide a comprehensive map to guide the choice of the mass and the position of the attached particle in order to significantly enhance the higher harmonic signals containing information on the material properties. The first three eigenmodes can be simultaneously excited with only one carefully positioned particle of specific mass to enhance multiple harmonics. Accessing the interaction force qualitatively based on the high-sensitive harmonic signals combines the real-time material characterization with the imaging capability. (C) 2008 American Institute of Physics.
Resumo:
We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.
Resumo:
A generalized model for the effective thermal conductivity of porous media is derived based on the fact that statistical self-similarity exists in porous media. The proposed model assumes that porous media consist of two portions: randomly distributed non-touching particles and self-similarly distributed particles contacting each other with resistance. The latter are simulated by Sierpinski carpets with side length L = 13 and cutout size C = 3, 5, 7 and 9, respectively, depending upon the porosity concerned. Recursive formulae are presented and expressed as a function of porosity, ratio of areas, ratio of component thermal conductivities and contact resistance, and there is no empirical constant and every parameter has a clear physical meaning. The model predictions are compared with the existing experimental data, and good agreement is found in a wide range of porosity of 0.14-0.80, and this verifies the validity of the proposed model.
Resumo:
An approximate model, a fractal geometry model, for the effective thermal conductivity of three-phase/unsaturated porous media is proposed based on the thermal-electrical analogy technique and on statistical self-similarity of porous media. The proposed thermal conductivity model is expressed as a function of porosity (related to stage n of Sierpinski carpet), ratio of areas, ratio of component thermal conductivities, and saturation. The recursive algorithm for the thermal conductivity by the proposed model is presented and found to be quite simple. The model predictions are compared with the existing measurements. Good agreement is found between the present model predictions and the existing experimental data. This verifies the validity of the proposed model. (C) 2004 American Institute of Physics.