577 resultados para CdTe quantum dots


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, growth of GaN-based materials-related quantum dots has become a hot topic in semiconductor materials research. Considerable efforts have been devoted to growth of self-assembled quantum dots of GaN-based materials via MOCVD (Metal Organic Chemical Vapor Deposition) and there are a lot of relevant literatures. There is, however, few review papers for the topic. In this paper, different experimental methods for fabrication of quantum dots of GaN-based materials via MOCVD are critically reviewed and the experimental conditions and parameters, which may affect growth of the quantum dots, are analyzed, with an aim at providing some critical reference for the related future experiment research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs was deposited by molecular beam epitaxy (MBE) on a GaAs substrate with an intentional temperature gradient from centre to edge. Two-dimensional (2D) to three-dimensional (3D) morphology evolution was found along the direction in which the substrate temperature was decreasing. Quantum dots (QDs) with density as low as similar to 8 x 10(6) cm(-2) were formed in some regions. We attribute the morphological evolution to the temperature-dependent desorption of deposited indium and the intermixing between deposited indium and gallium from the buffer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs/GaAs quantum dots covered by the 1-nm InxAl(1-x)As (x = 0.2,0.3) and 3-nm In0.2Ga0.8As combination strain-reducing layer are fabricated, whose height can take up to 30-46 nm. The luminescence emission at a long-wavelength of 1.33 mum and the energy separation between the ground and the first-excited state of 86 meV are observed at room temperature. Furthermore, comparative study proves that the energy separation can increase to 91 meV by multiple stacking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The laterally confining potential of quantum dots (QDs) fabricated in semiconductor heterostructures is approximated by an elliptical two-dimensional harmonic-oscillator well or a bowl-like circular well. The energy spectrum of two interacting electrons in these potentials is calculated in the effective-mass approximation as a function of dot size and characteristic frequency of the confining potential by the exact diagonalization method. Energy level crossover is displayed according to the ratio of the characteristic frequencies of the elliptical confinement potential along the y axis and that along the x axis. Investigating the rovibrational spectrum with pair-correlation function and conditional probability distribution, we could see the violation of circular symmetry. However, there are still some symmetries left in the elliptical QDs. When the QDs are confined by a "bowl-like" potential, the removal of the degeneracy in the energy levels of QDs is found. The distribution of energy levels is different for the different heights of the barriers. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transmission through coupled quantum dots (CQDs) is calculated using the coupled-channel recursion method. Our results reveal that the conductance peaks move to high energy as the CQDs radius decreases or the period increases. If we increase the transverse momentum the conductance peaks move to high energy. Applying this characteristic, we can design a switch device using CQDs by applying a static electric field perpendicular to transmission direction. The theoretical results qualitatively agree with the available experimental data. Our calculated results may be useful for the application of CQDs to photoelectric devices. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs quantum dots have been grown by solid source molecular beam epitaxy on different matrix to investigate the effect on the structure and optical properties. High density of 1.02 x 10(11) cm(-2) of InAs islands on In0.15Ga0.85As and In0.15Al0.85As underlying layer has been achieved. Atomic force microscopy and photoluminescence spectra show the size evolution of InAs islands on In0.15Ga0.85As underlying layer. A strong 1.3 mum photoluminescence from InAs islands on In0.15Ga0.85As underlying layer and with InGaAs strain-reduced layer has been obtained. Single-mirror light emitting diode structures with InAs quantum dots capped by InGaAs grown on InGaAs layer as active layer were fabricated and the corresponding radiative efficiency was deduced to be as high as 20.5%. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the effect of different cap layers on the photoluminescence (PL) of self-assembled InAs/GaAs quantum dots (QDs). Based upon different cap layers, the wavelength of InAs QDs can be tuned to the range from 1.3 to 1.5 mum. An InAlAs and InGaAs combination layer can enlarge the energy separation between the ground and first excited radiative transition. GaAs/InAs short period superlattices (SLs) make the emission wavelength shift to 1.53 mum. The PL intensity of InAs QDs capped with GaAs/InAs SLs shows an anomalous increase with increasing temperature. We attribute this to the transfer of carriers between different QDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selectively photo-excited C-V spectroscopy has been measured in an In0.5Ga0.5As quantum dots (QDs)-embedded, three barrier-two well heterostructure. By comparing with a theoretical capacitance model, the pure capacitive contribution from In0.5Ga0.5As QDs, due to tunnelling coupling between In0.5Ga0.5As QDs and In0.18Ga0.82As quantum well, has been used to obtain the density of charges from photo-excited In0.5Ga0.5As QDs in a very straightforward manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new self-assembled quantum dots system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix has been fabricated. The photoluminescence linewidth increases with increasing temperature, which is very different from normal In(Ga)As/GaAs quantum dots. The results are attributed to a higher energy of the wetting layer which breaks the carrier transfer channel between dots and keeps the dots more isolated from each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied how the optical properties of InAs self-assembled quantum dots (QDs) grown on GaAs substrate are affected when depositing an InAlAs/InGaAs combination overgrowth layer directly on it by rapid thermal annealing (RTA). The photoluminescence measurement demonstrated that the InAs QDs experiences an abnormal variation during the course of RTA. The model of transformation of InAs-InAlAs-InGaAlAs could be used to well explain the phenomena. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and optical properties of In(Ga)As with the introduction of InGaAlAs or InAlAs seed dot layers are investigated. The area density and size homogeneity of the upper InGaAs dots are efficiently improved by the introduction of a buried layer of high-density dots. Our explanation for the realization of high density and size homogeneity dots is presented. When the GaAs spacer layer is too thin to cover the seed dots, the upper dots exhibit some optical properties like those of a quantum well. By analyzing the growth dynamics, we refer to this kind of dot as an empty-core dot. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we have investigated the temperature dependence of photoluminescence (PL) from self-assembled InAs quantum dots (QDs) covered by an InAlAs/InGaAs combination layer. The ground state experiences an abnormal variation of PL linewidth from 15 K up to room temperature. Meanwhile, the PL integrated intensity ratio of the first excited state to the ground state for InAs QDs unexpectedly decreases with increasing temperature, which we attribute to the phonon bottleneck effect. We believe that these experimental results are closely related to the partially coupled quantum dots system and the large energy separation between the ground and the first excited states. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface morphology and optical properties of 1.3 mum self-organized InGaAs/GaAs quantum dots structure grown by molecular beam epitaxy have been investigated by atomic force microscopy and photoluminescence measurements. It has been shown that the surface morphology evolution and emission wavelengths of InGaAs/GaAs QDs can be controlled effectively via cycled monolayer deposition methods due to the reduction of the surface strain. Our results provide important information for optimizing the epitaxial parameters for obtaining 1.3 mum long wavelength emission quantum dots structures. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass spherical microcavities containing CdSSe semiconductor quantum dots (QDs) of a few microns in diameter are fabricated using a physical method. When a single glass microspherical cavity is excited by a laser beam at room temperature, very strong and sharp whispering gallery modes are shown on the background of PL spectra of CdSSe QDs, which confirms that coupling between the optical emission of embedded QDs and spherical cavity modes is realized. For a glass microsphere only 4.6 mum in diameter, it was found that the energy separation is nearly up to 26 nm both for TE and TM modes. With the increasing excitation intensity, the excitation intensity dependence of the emission intensity is not linear in the double-logarithmic scale. Above the threshold value, the linewidths of resonance modes become narrower. The lasing behavior is achieved at relatively low excitation intensity at room temperature. High optical stability and low threshold value make this optical system promising in visible microlaser applications. (C) 2002 Elsevier Science B.V. All rights reserved.