282 resultados para Cathode ray tubes.
Resumo:
Irradiation has been widely reported to damage organisms by attacking on proteins, nucleic acid and lipids in cells. However, radiation hormesis after low-dose irradiation has become the focus of research in radiobiology in recent years. To investigate the effects of pre-exposure of mouse brain with low-dose C-12(6+) ion or Co-60 gamma (gamma)-ray on male reproductive endocrine capacity induced by subsequent high-dose irradiation, the brains of the B6C3F(1) hybrid strain male mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy as challenging irradiation dose at 4 h after pre-exposure. Serum pituitary gonadotropin hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), testosterone, testis weight, sperm count and shape were measured on the 35th day after irradiation. The results showed that there was a significant reduction in the levels of serum FSH, LH, testosterone, testis weight and sperm count, and a significant increase in sperm abnormalities by irradiation of the mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray. Moreover, the effects were more obvious in the group irradiated by C-12(6+) ion than in that irradiated by Co-60 gamma-ray. Pre-exposure with low-dose C-12(6+) ion or Co-60 gamma-ray significantly alleviated the harmful effects induced by a subsequent high-dose irradiation.
Resumo:
Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane Subunit gp91(phox) was dose-dependent. Meanwhile, the cytoplasmic subunit p47(phox) was translocated to the cell membrane and localized with p22(phox) and gp91(phox) to form reactive NADPH oxidase. Our data Suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.
Resumo:
The effect of adding internal fins to the injection tube of a storage cell target filled with a polarized atomic beam source has been studied. The tube conductance and the atomic beam intensity at the exit of the injection tube have been measured, observing an unexpectedly large beam loss. Simulations of the atomic beam reproduce the observed attenuation only when the non-zero azimuthal component of the atom's velocity is taken into account.
Resumo:
The L-shell x-ray yields of Zr and Mo bombarded by slow Ar16+ ions are measured. The energy of the Ar16+ ions ranges from about 150keV to 350keV. The L-shell x-ray production cross sections of Zr and Mo are extracted from these yields data. The explanation of these experimental results is in the framework of the adiabatic directionization and the binding energy modified BEA approximation. We consider, in the slow asymmetric collisions such as Ar and Mo/Zr, the transient united atoms (UA) are formed during the ion-surface interaction and the direct-ionization is the main mechanism for the inner-shell vacancy production. Generally, the theoretical results are in good agreement with the experimental data.
Resumo:
L-shell X-ray spectra of Mo surface induced by Xe25+ and Xe29+ were measured. The X-ray intensity was obtained in the kinetic energy range of the incident ions from 350 to 600 keV. The relationship of X-ray intensity with kinetic energy of the projectile and its charge state were studied, and the simple explanation was given.
Resumo:
The X-ray spectra of Nb surface induced by Arq+ (q = 16,17) ions with the energy range from 10 to 20 keV/q were studied by the optical spectrum technology. The experimental results indicate that the multi-electron excitation occurred as a highly charged Ar16+ ion was neutralized below the metal surface. The K shell electron of Ar16+ was excited and then de-excited cascadly to emit K X-ray. The intensity of the X-ray emitted from K shell of the hollow Ar atom decreased with the increase of projectile kinetic energy. The intensity of the X-ray emitted from L shell of the target atom Nb increased with the increase of projectile kinetic energy. The X-ray yield of Ar17+ is three magnitude orders larger than that of Ar16+.
Resumo:
The 10-20 qkeV Ar16+ and Ar17+ ions produced by SECRAL enter on metallic surface of Zr. In this interaction, the multi-electron excitation possibly occurred in the neutralization of the highly charged Ar16+ ions, which produced vacancy in the K shell. Electron of the high n state de-excited to K vacancy gives off X-ray. The experimental results show that X-ray intensities for the Ar hollow atom decrease with increase of incidence energy, and L beta X-ray intensities of target atom Zr increase with increasing incidence energy. K alpha X-ray yield per ion for Ar17+ was five orders of magnitude greater than that for Ar16+
Resumo:
Using the slow highly charged ions Xe-129(q+) (q = 25, 26, 27; initial kinetic T-0 <= 4.65 keV/a.u.) to impact Au surface, the Au atomic M alpha characteristic X-ray spectrum is induced. The result shows that as long as the charge state of projectile is high enough, the heavy atomic characteristic X-ray can be effectively excited even though the incident beam is very weak (nA magnitude), and the X-ray yield per ion is in the order of 10(-8) and increases with the kinetic energy and potential energy of projectile. By measuring the Au M alpha-X-ray spectra, Au atomic N-level lifetime is estimated at about 1.33x10(-18) s based on Heisenberg uncertainty relation.
Resumo:
The aim of this study was to evaluate the protective effects of different doses and administration modes of N-acetylcysteine (NAC) against X-ray-induced liver damage in mice. Kun-Ming mice were divided into four groups, each composed of six animals: two control groups and two NAC-treated groups. An acute study was carried out to determine alterations in lipid peroxidation (determined by measuring malondiadehyde (MDA) level), glutathione (GSH) content and superoxide dismutase (SOD) activity (assayed by colorimetric method), and DNA damage (characterized by DNA-single strand break using with comet assay) as well as cell apoptosis (measured by flow cytometry) at 12 h after irradiation. The results showed that there were dose-related decreases in MDA level, DNA damage and cell apoptosis, and dose-dependent increases in GSH content and SOD activity in all NAC-treated groups compared to control groups, indicating that pre-treatment or post-treatment with NAC significantly attenuates the acute liver damage caused by X-ray. In addition, significant positive correlations were observed between MDA level and DNA damage or cell apoptosis, implying that lipid peroxidation plays a major role in X-ray-induced liver injury. The data suggest that NAC exerts its radioprotective effect by counteracting accumulated reactive oxygen species in the liver through its properties as a direct antioxidant and a GSH precursor, when administered before or after X-ray irradiation.
Resumo:
This study is aimed at observing the apoptosis and Bcl-2/Bax gene expression of mammalian cells following heavy-ion and X-ray irradiations. Exponentially growing human hepatoma SMMC-7721 cells cultured in vitro were irradiated with a C-12 ion beam of 50 MeV/u (corresponding to a LET value of 44.56 keV/mu m) from Heavy Ion Research Facility in Lanzhou (HIRFL) at doses varying from 0 to 3 Gy. The X-ray irradiation (8 MV) was performed in the therapy unit of the General Hospital of the Lanzhou Military Area. Survival fractions of irradiated cells at various doses were measured by means of MTT assay. Apoptotic cells after irradiation were analyzed with fluorescence microscope and flow cytometer (FCM). Immuno-histological assay were applied to detect the expression of Bcl-2/Bax genes in the irradiated cells. The survival fraction of SMMC-7721 cells decreased gradually (vs. control p<0.05) with increasing the dose of the carbon ion beam more obviously than X-ray irradiation, and the carbon ion irradiation efficiently induced cell apoptosis and significantly promoted the expression of Bax gene while Bcl-2 gene expression was restrained. High-LET heavy ion beam would induce cell apoptosis effectively than low-LET X-ray, and the apoptosis rate is correlated with the transcription of Bcl-2/Bax and the ratio of Bcl-2/Bax in human hepatoma SMMC-7721 cells after irradiation to heavy ion beam.
Resumo:
We have investigated the performance of a EXOGAM-Segmented-Clover with 16 segments as a Compton polarimeter to measure the linear polarization of gamma rays. The polarization sensitivity of the Clover detector has been measured at the energy of 1332keV through the coincidence measurements of cascade gamma-rays from Co-60. Experimental values were in good accord with our expectation.We have investigated the performance of a EXOGAM-Segmented-Clover with 16 segments as a Compton polarimeter to measure the linear polarization of gamma rays. The polarization sensitivity of the Clover detector has been measured at the energy of 1332keV through the coincidence measurements of cascade gamma-rays from Co-60. Experimental values were in good accord with our expectation.
Resumo:
The X-ray emission induced by highly charged argon and xenon ions impinging on a beryllium surface is investigated. It is found that spectra of the X-ray induced by Ar-17,Ar-18+ interacting with the surface are very different from those of the X-ray induced by Ar-17,Ar-18+ interacting with residual gases. The result provides an experimental evidence for the existence of hollow atoms below the surface. Several unexpected X-ray lines are also found in the experiment. Firstly, K X-rays are observed when Ar16+ ions which initially have no K shell holes interact with the surface. Secondly, if there are more than 2 M shell vacancies at the initial time, strong M alpha alpha two-electron-one-photon (TEOP) transitions are found in the collisions of Xe-28+,Xe-29+,Xe-30+ ions with the surface.
Resumo:
The brain of the Kun-Ming strain mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy of 12C6+ ion or Co-60 gamma-ray as challenging irradiation dose at 4 h after per-exposure. Body weight and serum growth hormone (GH) concentration were measured at 35th day after irradiation. The results showed that irradiation of mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray significantly diminished mouse body weight and level of serum GH. The relative biological effectiveness values of a 2 Gy dose of C-12(6+) ion calculated with respect to Co-60 gamma-ray were 1.47 and 1.34 for body weight and serum GH concentration, respectively. Pre-exposure with a low-dose (0.05 Gy) of C-12(6+) ion or Co-60 gamma-ray significantly alleviated reductions of mouse body weight and level of serum GH induced by a subsequent high-dose (2 Gy) irradiation. The data suggested that low-dose ionizing irradiation can induce adaptive hormetic responses to the harmful effects of pituitary by subsequent high-dose exposure.
Resumo:
By use of optical spectrum technology, the spectra of X-ray induced by highly charged Ar-40(q+) ions interacting with Au surface have been studied. The results show that the argon K alpha X-ray were emitted from the hollow atoms formed below the surface. There is a process of multi-electron exciting in neutralization of the Ar16+ ion, with electronic configuration 1s(2) in its ground state below the solid surface. The yield of the projectile K alpha X-ray is related to its initial electronic configuration, and the yield of the target X-ray is related to the projectile kinetic energy.
Resumo:
This paper studies the X-ray spectra produced by the interaction of highly charged ions of Arq+ (q = 16, 17, 18) with metallic surface of Be, Al, Ni, Mo and Au respectively. The experimental results show that the K alpha X-ray emerges from under the surface of solid in the interaction of ions with targets. The multi-electron excitation occurred in the process neutralization of the Ar16+ in electronic configuration of 1s(2) in metallic surfaces, which produces vacancy in the K shell. Electron from high n state transition to K vacancy gives off X-ray. We find that there is no obvious relation between the shape of X-ray spectra and the different targets. The X-ray yield of incident ions are associated with initial electronic configuration. The X-ray yield of target is related to the kinetic energy of the incident ions.