310 resultados para surface morphology evolution


Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-quality GaN epilayers were grown on Si (1 1 1) substrate by metalorganic chemical vapor deposition. The growth process was featured by using an ultrathin AlN wetting layer (WL) in combination with a low-temperature (LT) GaN nucleation layer (NL). The full-width at half-maximum (FWHM) of the X-ray rocking curve for the GaN (0 0 0 2) diffraction was 15 arcmin. The dislocation density estimated from TEM investigation was found to be of the order of 10(9)cm(-2). The FWHM of the dominant band edge emission peak of the GaN was measured to be 47 meV by photoluminescence measurement at room temperature. The ultrathin AlN WL was produced by nitridation of the aluminium pre-covered substrate surface. The reflection high-energy electron diffraction showed that the AlN WL was wurtzite and the surface morphology was like the nitridated surface of sapphire by the atomic force microscopy measurement. X-ray photoelectron spectroscopy measurement showed that Si and SixNy at a certain concentration were intermixed in the AlN WL. This study suggests that by employing an appropriate WL combined with a LT NL, high-quality heteroepitaxy is achievable even with large mismatch. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

gamma-Al2O3 films were grown on Si (10 0) substrates using the sources of TMA (AI(CH3)(3)) and O-2 by very low-pressure chemical vapor deposition. The effects of temperature control on the crystalline quality, surface morphology, uniformity and dielectricity were investigated. It has been found that the,gamma-Al2O3 film prepared at a temperature of 1000degreesC has a good crystalline quality, but the surface morphology, uniformity and dielectricity were poor due to the etching reaction between 0, and Si substrate in the initial growth stage. However, under a temperature-varied multi-step process the properties Of gamma-Al2O3 film were improved. The films have a mirror-like surface and the dielectricity was superior to that grown under a single-step process. The uniformity of gamma-Al2O3 films for 2-in epi-wafer was <5%, it is better than that disclosed elsewhere. In order to improve the crystalline quality, the gamma-Al2O3 films were annealed for I h in O-2 atmosphere. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-assembled InAs nanostructures on (0 0 1) InP substrate have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). It is found that the morphologies and PL properties of InAs nanostructures depend strongly on the growth condition. For the same buffer layer, elongated InAs quantum wires (QWRs) and no isotropic InAs quantum dots (QDs) can be obtained using different growth conditions. At the same time, for InAs quantum dots, PL spectra also show several emission peaks related to different islands size. Theoretical calculation indicated that there are size quantization effects in InAs islands. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Defects and morphologies are presented in this paper as revealed with transmission electron microscope (TEM) in the In(0.8)G(0.2)As/InAlAs heterostructure on InP(001) for high-electron-mobility transistors application. Most of the misfit dislocation lines are 60 degrees type and they deviate < 110 > at some angles to either side according to their Burges vectors. The misfit dislocation lines deviating [-110] are divided into two types according to whether their edge component b(eg) of Burges vectors in [001] pointing up or down. If b(eg) points up in the growth direction, there is the local periodical strain modulation along the dislocation line. In addition, the periodical modulation in height along [-110] on the In(0.8)G(0.2)As surface is observed, this surface morphology is not associated with the relaxation of mismatch strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An improved pulsed rapid thermal annealing (PRTA) has been used for the solid-phase crystallization (SPC) of a-Si films prepared by PECVD. The SPC can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/1-s 850 degrees C thermal pulse. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD). The results indicate that this PRTA is a suitable post-crystallization technique for fabricating large-area poly-Si films on low-cost substrate. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cubic AlGaN films were grown on GaAs(100) substrates by MOVPE. Scanning electron microscope and photoluminescence were used to analyze the surface morphology and the crystalline quality of the epitaxial layers. We found that both NH, and TEGa fluxes have a strong effect on the surface morphology of AlGaN films. A model for the lateral growth mechanism is presented to qualitatively explain this effect. The content of hexagonal AlGaN in the cubic AlGaN films was also related to the NH3 flux. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the growth of high-quality cubic phase InGaN on GaAs by MOCVD. The cubic InGaN layers are grown on cubic GaN buffer layers on GaAs (001) substrates. The surface morphology of the films are mirror-like. The cubic nature of the InGaN films is obtained by Xray diffraction (XRD) measurements. The InGaN layers show strong photoluminescence (PL) at room temperature. Neither emission peak from wurtzite GaN nor yellow luminescence is observed in our films. The highest In content as determined by XRD is about 17% with an PL emission wavelength of 450 nm. The FWHM of the cubic InGaN PL peak are 153 meV and 216 meV for 427 nm and 450 nm emissions, respectively. It is found that the In compositions determined from XRD are not in agreement with those estimated from PL measurements. The reasons for this disagreement are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas source molecular beam epitaxy has been used to grow Si1-xGex alloys and Si1-xGex/Si multi-quantum wells (MQWs) on (100) Si substrates with Si2H6 and GeH4 as sources. Heterostructures and MQWs with mirror-like surface morphology, good crystalline qualify, and abrupt interfaces have been studied by a variety of in situ and ex situ techniques. The structural stability and strain relaxation in Si1-xGex/Si heterostructures have been investigated, and compared to that in the As ion-implanted Si1-xGex epilayers. The results show that the strain relaxation mechanism of the non-implanted Si1-xGex epilayers is different from that of the As ion-implanted Si1-xGex epilayers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low temperature (similar to 500 degrees C) growth properties of Si1-xGex by disilane and solid-Ge molecular beam epitaxy have been studied with an emphasis on surface morphology and growth kinetics. It is found that low-temperature growth(<500 degrees C) is in layer-by-layer mode and atomically-smooth surfaces have been obtained in as-grown samples with large Ge composition (>0.5). Ge composition dependence on substrate temperature, Ge cell temperature and disilane flow rate have been investigated. It is found that in low-temperature growth (less than or equal to 500 degrees C) and under large disilane flux, Ge composition increases with the increase of Ge flux and further increase of Ge flux leads to the saturation of Ge composition. Similar compositional dependence has been found at different growth temperatures. The saturated composition increases with the decrease of substrate temperature. The results can be explained if H desorption is assumed to occur from both Si and Ge monohydrides without diffusional exchange and the presence of Ge enhances H desorption on a Si site. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single crystal GaN films of hexagonal modification have been fabricated on Al2O3/Si (001) substrates via a low pressure metalorganic chemical deposition (LP-MOCVD) method. The full width at half-maximum of (0002) X-ray diffraction peak for the GaN film 1.1 mu m thick was 72 arcmin. and the mosaic structure of the film was the main cause of broadening to the X-ray diffraction peak. Al room temperature, the photoluminescence (PL) spectrum of GaN exhibited near band edge emission peaking at 365 nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InAs layers were grown on GaAs by molecular beam epitaxy (MBE) at substrate temperature 450 and 480 degrees C, and the surface morphology was studied with scanning electron microscopy (SEM). We have observed a high density of hexagonal deep pits for samples grown at 450 degrees C, however, the samples grown at 480 degrees C have smooth surface. The difference of morphology can be explained by different migration of cations which is temperature dependent. Cross-sectional transmission electron microscopy (XTEM) studies showed that the growth temperature also affect the distributions of threading dislocations in InAs layers because the motion of dislocations is kinetically limited at lower temperature. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel AlGaN/GaN/GaN/GaN double heterojunction high electron mobility transistors (DH-HEMTS) structure with an AlN interlayer on sapphire substrate has been grown by MOCVD. The structure featured a 6-10 nm In0.1Ga0.9N layer inserted between the GaN channel and GaN buffer. And wer also inserted one ultrathin. AlN interlayer into the Al/GaN/GaN interface, which significantly enhanced the mobility of two-dimensional electron gas (2DEG) existed in the GaN channel. AFM result of this structure shows a good surface morphology and a low dislocation density, with the root-mean-square roughness (RMS) of 0.196 nm for a scan area of 5 mu m x 5 mu m. Temperature dependent Hall measurement was performed on this sample, and a mobility as high as 1950 cm(2)/Vs at room temperature (RT) was obtained. The sheet carrier density was 9.89 x10(12) cm(2), and average sheet resistance of 327 Omega/sq was achieved. The mobility obtained in this paper is about 50% higher than other results of similar structures which have been reported. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High homoepitaxial growth of 4H-SiC has been performed in a home-made horizontal hot wall CVD reactor on n-type 4H-SiC 8 degrees off-oriented substrates in the size of 10 mm x 10 mm, using trichlorosilane (TCS) as silicon precursor source together with ethylene as carbon precursor source. Cross-section Scanning Electron Microscopy (SEM), Raman scattering spectroscopy and Atomic Force Microscopy (AFM) were used to determine the growth rate, structural property and surface morphology, respectively. The growth rate reached to 23 mu m/h and the optimal epilayer was obtained at 1600 degrees C with TCS flow rate of 12 seem in C/Si of 0.42, which has a good surface morphology with a low Rms of 0.64 nm in 10 mu mx10 mu m area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AlGaN/AlN/GaN/InGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) structures with improved buffer isolation have been investigated. The structures were grown by MOCVD on sapphire substrate. AFM result of this structure shows a good surface morphology with the root-mean-square roughness (RMS) of 0.196 nm for a scan area of 5 mu mx5 mu m. A mobility as high as 1950 cm(2)/Vs with the sheet carrier density of 9.89x10(12) cm(-2) was obtained, which was about 50% higher than other results of similar structures which have been reported. Average sheet resistance of 327 Omega/sq was achieved. The HEMTs device using the materials was fabricated, and a maximum drain current density of 718.5 mA/mm, an extrinsic transconductance of 248 mS/mm, a current gain cutoff frequency of 16 GHz and a maximum frequency of oscillation 35 GHz were achieved.