359 resultados para self-induced electron cavitation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fully 3-D atomistic quantum mechanical simulation is presented to study the random dopant-induced effects in nanometer metal-oxide-semiconductor field-effect transistors. The empirical pseudopotential is used to represent the single particle Hamiltonian, and the linear combination of bulk band method is used to solve the million atom Schrodinger equation. The gate threshold fluctuation and lowering due to the discrete dopant configurations are studied. It is found that quantum mechanical effects increase the threshold fluctuation while decreasing the threshold lowering. The increase of threshold fluctuation is in agreement with the researchers' early study based on an approximated density gradient approach. However, the decrease in threshold lowering is in contrast with the density gradient calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure and Lande electron g-factors of manganese-doped HgTe quantum spheres are investigated, in the framework of the eight-band effective-mass model and the mean-field approximation. It is found that the electronic structure evolves continuously from the zero-gap configuration to an open-gap configuration with decreasing radius. The size dependence of electron g-factors is calculated with different Mn-doped effective concentration, magnetic field, and temperature values, respectively. It is found that the variations of electron g-factors are quite different for small and large quantum spheres, due to the strong exchange-induced interaction and spin-orbit coupling in the narrow-gap DMS nanocrystals. The electron g-factors are zero at a critical point of spherical radius R-c; however, by modulating the nanocrystal size their absolute values can be turned to be even 400 times larger than those in undoped cases. Copyright (c) EPLA, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetotransport properties of two-dimensional electron gas have been investigated for three In0.53Ga0.47As/In0.52Al0.48As quantum well samples having two occupied subbands with different well widths. When the intersubband scattering is considered, we have obtained the subband density, transport scattering time, quantum scattering time and intersubband scattering time, respectively, by analyzing the result of fast Fourier transform of the first derivative of Shubnikov-de Haas oscillations. It is found that the main scattering mechanism is due to small-angle scattering, such as ionized impurity scattering, for the first subband electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AlGaN/GaN heterostructures have been irradiated by neutrons with different influences and characterized by means of temperature-dependent Hall measurements and Micro-Raman scattering techniques. It is found that the carrier mobility of two-dimensional electron gas (2DEG) is very sensitive to neutrons. At a low influence of 6.13 x 10(15) cm(-2), the carrier mobility drops sharply, while the sheet carrier density remains the same as that of an unirradiated sample. Moreover, even for a fluence of up to 3.66 x 10(16) cm(-2), the sheet carrier density shows only a slight drop. We attribute the degradation of the figure-of-merit (product of n(s) x mu) of 2DEG to the defects induced by neutron irradiation. Raman measurements show that neutron irradiation does not yield obvious change to the strain state of AlGaN/GaN heterostructures, which proves that degradation of sheet carrier density has no relation to strain relaxation in the present study. The increase of the product of n(s) x mu of 2DEG during rapid thermal annealing processes at relatively high temperature has been attributed to the activation of Ge-Ga transmuted from Ga and the recovery of displaced defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The center-of-mass motion of quasi-two-dimensional excitons with spin-orbit coupling is calculated within the framework of effective mass theory. The results indicate that the spin-orbit coupling will induce a controllable bright-to-dark transition in a quasi-two-dimensional exciton system. This procedure can work as a way to increase the lifetime of excitons. (c) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled InAs/AlAs quantum dots embedded in a resonant tunneling diode device structure are grown by molecular beam epitaxy. Through the selective etching in a C6H8O7 center dot H2O-K3C6H5O7 center dot H2O-H2O2 buffer solution, 310 nm GaAs capping layers are removed and the InAs/AlAs quantum dots are observed by field-emission scanning electron microscopy. It is shown that as-fabricated quantum dots have a diameter of several tens of nanometers and a density of 10(10) cm(-2) order. The images taken by this means are comparable or slightly better than those of transmission electron microscopy. The undercut of the InAs/AlAs layer near the edges of mesas is detected and that verifies the reliability of the quantum dot images. The inhomogeneous oxidation of the upper AlAs barrier in H2O2 is also observed. By comparing the morphologies of the mesa edge adjacent regions and the rest areas of the sample, it is concluded that the physicochemical reaction introduced in this letter is diffusion limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is studied whether there is any regular relationship between the yellow luminescence band and electron mobility of n-type GaN. For a series of GaN samples grown with the same Si doping, it is found that the electron mobility decreases with an increase of relative intensity of yellow luminescence, accompanied by an increase of edge dislocation density. Further research indicates that it is acceptors introduced by edge dislocations which lead to the concomitant changes of yellow luminescence and electron mobility. Similar changes are induced by Si doping in the n-type GaN samples with relatively low edge dislocation density. However, the relationship between the yellow luminescence and electron mobility of n-type GaN is not a simple one. A light Si doping may simultaneously increase yellow luminescence and electron mobility when Si doping plays a dominant role in reducing the carrier scattering. This means that even the intensity of yellow luminescence is often used as an indicator of material quality for GaN, it does not have any monotonous correlation with the electron mobility of GaN. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric-tunable spin-independent magneto resistance effect has been theoretically investigated in ballistic regime within a two-dimensional electron gas modulated by magnetic-electric barrier nanostructure. By including the omitted stray field in previous investigations oil analogous structures, it is demonstrated based on this improved approximation that the magnetoresistance ratio for the considered structure can be efficiently enhanced by a proper electric barrier up to the maximum value depending on the specific magnetic suppression. Besides, it is also shown the introduction of positive electrostatic modulation can effectively overcome the degradation of magnetoresistance ratio for asymmetric configuration and enhance the visibility of periodic pattern induced by the size effect, while for an opposite modulation the system magnetoresistance ratio concerned may change its sign. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical properties of AlyGa1-yN/AlxGa1-xN/AlN/GaN structure are investigated by solving coupled Schrodinger and Poisson equation self-consistently. Our calculations show that the two-dimensional electron gas (2DEG) density will decrease with the thickness of the second barrier (AlyGa1-yN) once the AlN content of the second barrier is smaller than a critical value y(c), and will increase with the thickness of the second barrier (AlyGa1-yN) when the critical AlN content of the second barrier y(c) is exceeded. Our calculations also show that the critical AlN content of the second barrier y(c) will increase with the AlN content and the thickness of the first barrier layer (AlxGa1-xN).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of ferromagnetism in d(0) semiconductors is studied using first-principles methods with ZnO as a prototype material. We show that the presence of spontaneous magnetization in nitrides and oxides with sufficient holes is an intrinsic property of these first-row d(0) semiconductors and can be attributed to the localized nature of the 2p states of O and N. We find that acceptor doping, especially doping at the anion site, can enhance the ferromagnetism with much smaller threshold hole concentrations. The quantum confinement effect also reduces the critical hole concentration to induce ferromagnetism in ZnO nanowires. The characteristic nonmonotonic spin couplings in these systems are explained in terms of the band coupling model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron spin relaxation of charged excitons X+ and X2+ are investigated by time-resolved and polarization-resolved photoluminescence spectroscopy. For X+ configuration, the electron spin relaxation shows a typical decay curve induced by hyperfine interaction with nuclei, whereas for X2+ state the electron spin relaxation is affected not only by nuclei but also by electron-hole exchange interaction, leading to a power-law time dependence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theoretical electron mobility limited by dislocation scattering of a two-dimensional electron gas confined near the interface of an AlxGa1-xN/GaN heterostructure is calculated. The accurate wave functions and electron distributions of the three lowest subbands for a typical structure are obtained by solving the Schrodinger and Poisson equations self-consistently. Based on the model of treating dislocation as a charged line, a simple scattering potential, a square-well potential, is utilized. The estimated mobility suggests that such a choice can simplify the calculation without introducing significant deviation from experimental data. It is also found that the dislocation scattering dominates both the low- and moderate-temperature mobilities and accounts for the nearly flattening-out behavior with increasing temperature. To clarify the role of dislocation scattering all standard scattering mechanisms are included in the calculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots (QDs), which are grown at relative low temperature (460degreesC) and embedded in GaAs p-i-n structure, have been studied by dc-biased electroreflectance. Franz-Keldysh oscillations from the undoped GaAs layer are used to determine the electric field under various bias voltages. Stark shift of -34 meV for the ground-state interband transition of the QDs is observed when the electric field increases from 105 to 308 kV/cm. The separation of the electron and hole states in the growth direction of 0.4 nm, corresponding to the built-in dipole moment of 6.4x10(-29) C m, is determined. It is found that the electron state lies above that of the hole, which is the same as that predicted by theoretical calculations for ideal pyramidal InAs QDs. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically study the conducting electronic contribution to the cohesive force in a metallic nanowire irradiated under a transversely polarized external electromagnetic field at low temperatures and in the ballistic regime. In the framework of the free-electron model, we have obtained a time-dependent two-level electronic wavefunction by means of a unitary transformation. Using a thermodynamic statistical approach with this wavefunction, we have calculated the cohesive force in the nanowire. We show that the cohesive force can be divided into two components, one of which is independent of the electromagnetic field (static component), which is consistent with the existing results in the literature. The magnitude of the other component is proportional to the electromagnetic field strength. This extra component of the cohesive force is originally from the coherent coupling between the two lateral energy levels of the wire and the electromagnetic field.