257 resultados para organic fertilization
Resumo:
A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.
Resumo:
Single-crystal GaN films have been deposited on (01 (1) over bar 2) sapphire substrates using trimethylgallium (TMGa) and NH3 as sources. The morphological, crystalline, electrical and optical characterizations of GaN film are investigated. The carrier concentration ofundoped GaN increases with decreasing input NH3-to-TMGa molar flow ratio.
Resumo:
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
Resumo:
High performance InP/InGaAs heterojunction bipolar transistors(HBTs) have been widely used in high-speed electronic devices and optoelectronic integrated circuits. InP-based HBTs were fabricated by low pressure metal organic chemical vapor deposition(MOCVD) and wet chemical etching. The sub-collector and collector were grown at 655 ℃ and other layers at 550 ℃. To suppress the Zn out-diffusion in HBT, base layer was grown with a 16-minute growth interruption. Fabricated HBTs with emitter size of 2.5×20 μm~2 showed current gain of 70~90, breakdown voltage(BV_(CE0))>2 V, cut-off frequency(f_T) of 60 GHz and the maximum relaxation frequency(f_(MAX)) of 70 GHz.
Resumo:
In order to improve crystal quality for growth of quaternary InAlGaN, a series of InAlGaN films were grown on GaN buffer layer under different growth temperatures and carrier gases by low-pressure metal-organic vapor phase epitaxy. Energy dispersive spectroscopy (EDS) was employed to measure the chemical composition of the quaternary, high resolution X-ray diffraction (HRXRD) and photoluminescence (PL) technique were used to characterize structural and optical properties of the epilayers, respectively. The PL spectra of InAlGaN show with and without the broad-deep level emission when only N2 and a N2+H2 mixture were used as carrier gas, respectively. At pressure of 1.01×104 Pa and with mixed gases of nitrogen and hydrogen as carrier gas, different alloy compositions of the films were obtained by changing the growth temperature while keeping the fluxes of precursors of indium (In), aluminum (Al), gallium (Ga) and nitrogen (N2) constant. A combination of HRXRD and PL measurements enable us to explore the relative optimum growth parameters-growth temperature between 850℃ and 870℃,using mixed gas of N2+H2 as carrier gas.
Resumo:
The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm(2)/Vs with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm(2)/Vs and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.
Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics
Resumo:
We theoretically demonstrate a polarization-independent nanopatterned ultra-thin metallic structure supporting short-range surface plasmon polariton (SRSPP) modes to improve the performance of organic solar cells. The physical mechanism and the mode distribution of the SRSPP excited in the cell device were analyzed, and reveal that the SRSPP-assisted broadband absorption enhancement peak could be tuned by tailoring the parameters of the nanopatterned metallic structure. Three-dimensional finite-difference time domain calculations show that this plasmonic structure can enhance the optical absorption of polymer-based photovoltaics by 39% to 112%, depending on the nature of the active layer (corresponding to an enhancement in short-circuit current density by 47% to 130%). These results are promising for the design of organic photovoltaics with enhanced performance.
Resumo:
This work was supported by the National Science Foundation of China (60976008 and 60776015), the Special Funds for Major State Basic Research Project (973 program) of China (2006CB604907), and the 863 High Technology R&D Program of China (2007AA03Z402 and 2007AA03Z451). The authors express their appreciations to Prof. Yongliang Li (Analytical and Testing Center, Beijing Normal University) for FE-SEM measurements, to DrTieying Yang and Prof. Huanhua Wang (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences) for XRD measurements and helpful discussions.
Resumo:
本文以吉林省公主岭“国家黑土肥力与肥料效益长期定位监测基地”的黑土为材料,研究长期施肥对黑土POM的分布及POM(FPOM和OPOM)中碳水化合物特性的影响,结果表明: 有机肥及有机肥与化肥配施显著提高了土壤中碳水化合物的含量,促进了植物来源的中性糖和真菌来源的氨基糖在土壤中的积累。在有机质含量较高的黑土上长期施用高量有机肥会出现养分过剩的现象。不同施肥处理下黑土有机质中中性糖的相对含量与不施肥相比无显著变化,氨基糖的相对含量则显著增加。随着有机肥施用量的增加,土壤中中性糖的含量也随之显著增加,而氨基糖则没有明显变化。 有机肥及有机肥与化肥配施能显著增加黑土中POM以及POM-C、POM-N和碳水化合物的含量,且均随有机肥施用量的增加而增加。各个处理中OPOM的碳、氮和碳水化合物含量远远高于FPOM。POM中各个单糖对施肥的响应与碳水化合物的总量基本一致。单施高量有机肥及有机肥与化肥配施均能显著提高POM中中性糖和氨基糖占有机质的比例,单施低量有机肥对POM中氨基糖和FPOM中中性糖占有机质的比例作用不明显,而能显著增加OPOM中中性糖占SOM的比例。在POM的中性糖中葡萄糖和木糖对SOM的贡献较大,氨基糖中氨基葡萄糖的贡献较大。OPOM中碳水化合物对SOM的贡献大于FPOM。FPOM中中性糖主要来源于植物,而OPOM中则主要来源于植物和微生物。在短期范围内,施肥并没有引起POM中两种来源氨基糖比例的显著变化,而从长期来看,有机肥处理却使POM中细菌源氨基糖的积累得到了加强。单施化肥对黑土有机质和黑土POM的含量以及二者中的碳、氮和碳水化合物的含量和组成均没有显著的影响。
Resumo:
有机磷是植物和微生物的重要磷源,其各化合物含量组成在一定程度上可反映土壤供磷情况。31P 核磁共振谱仪(31P NMR)通过监测核磁共振频率可以将有机磷不同组分加以区分,是测定土壤有机磷组分的理想工具。本文以吉林省公主岭市不同施肥处理(不施肥处理Control;无机肥处理NPK;有机肥处理M1 、M2;有机无机配施处理M1+NPK、M2+NPK)的长期试验地典型黑土为研究对象,对其有机磷组分应用31P NMR技术进行了研究。结果发现: 1、上机样品的浓度对谱图的影响大,同一批样品需按照同一方法配制,且浓度不是越高越好。冻干前浸提液不中和,试验中未发现磷酸二酯,土壤的NaOH-EDTA浸提液在冷冻干燥前中和,可以减少磷酸二酯的水解;土壤全碳对实验谱图的分辨率有较大的影响。 2、Control处理和NPK处理磷酸单酯含量占浸提液全磷量的比例最高,分别为41%和38%,M2 + NPK处理比例最低为13% 。肌醇六磷酸盐含量占总有机磷量的比例在7% ~ 28%之间,Control处理最高,显著高于NPK处理、M1处理、M1 + NPK处理和M2 + NPK处理。土壤焦磷酸盐含量占浸提液全磷含量比例为0.01% ~ 0.31%,施有机肥处理土壤焦磷酸盐含量显著高于Control处理和NPK处理。 3、土壤浸提液冷冻干燥前中和,测定结果均发现胞壁酸(属磷酸二酯)的峰,中和后的测定磷酸二酯含量占浸提液全磷量的比例在0.53%和3.75%之间;且在Control处理发现-5.28ppm、-26.19ppm和-27.54ppm处发现三个未知峰;Control处理未知化合物占总有机磷的比例为0.35%。