225 resultados para VIBRONIC BAND INTENSITIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

N+ GaAs-n GaInP lattice-matched heterostructures, grown by metalorganic vapour phase epitaxy, have been studied by capacitance-voltage, current-voltage and current-temperature techniques. This allowed the determination of the conduction band offset in three different and independent ways. The value obtained (0.24-0.25 eV) has been verified by photoluminescence and photoluminescence excitation on a 90 angstrom thick GaAs well in GaInP grown under the same conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The band structure of the Zn1-xCdxSySe1-y quaternary alloy is calculated using the empirical pseudopotential method and the virtual crystal approximation. The alloy is found to be a direct-gap semiconductor for all x and y composition. Polynomial approximation is obtained for the energy gap as a function of the composition x and y. Electron and hole effective masses are also calculated along various symmetry axes for different compositions and the results agree fairly well with available experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tunneling from an AlGaAs confined thin layer to a GaAs layer in the GaAs/Al0.33Ga0.67As/GaAs structure during the trapped electron emission from deep level in the AlGaAs to its conduction band has been observed by deep level transient spectroscopy. With the aid of the tunneling effect, the conduction-band offset DELTAE(c) was determined to be 0.260 eV, corresponding to 63% of DELTAE(g). A calculation was also carried out based on this tunneling model by using the experimental value of DELTAE(c) = E2 - E1 = 0. 260 eV, and good agreement between the experimental and calculated curves is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although metalorganic vapor phase epitaxy (MOVPE) is generally regarded as a non-equillibrium process, it can be assumed that a chemical equilibrium is established at the vapor-solid interface in the diffusion limited region of growth rate. In this paper, an equilibrium model was proposed to calculate the relation between vapor and solid compositions for II-VI ternary alloys. Metastable alloys in the miscibility gap may not be obtained when the growth temperature is lower than the critical temperature of the system. The influence of growth temperature, reactor pressure, input VI/II ratio, and input composition of group VI reactants has been calculated for ZnSSe, ZnSeTe and ZnSTe. The results are compared with experimental data for the ZnSSe and ZnSTe systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recursion formulae for the reflection and the transmission probability amplitudes and the eigenvalue equation for multistep potential structures are derived. Using the recursion relations, a dispersion equation for periodic potential structures is presented. Some numerical results for the transmission probability of a double barrier structure with scattering centers, the lifetime of the quasi-bound state in a single quantum well with an applied field, and the miniband of a periodic potential structure are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Good agreements of the calculated excitation energies and fundamental energy gaps with the experimental band structures were achieved. We obtained the calculated fundamental gaps of Si and GaAs to be 1.22 and 1.42 eV in comparison to the experimental values of 1.17 and 1.52 eV, respectively. Ab initio pseudopotential method has been used to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shear-deformation-potential constant XI-u of the conduction-band minima of Si has been measured by a method which we called deep-level capacitance transient under uniaxial stress. The uniaxial-stress (F) dependence of the electron emission rate e(n) from deep levels to the split conduction-band minima of Si has been analyzed. Theoretical curves are in good agreement with experimental data for the S0 and S+ deep levels in Si. The values of XI-u obtained by the method are 11.1 +/- 0.3 eV at 148.9 K and 11.3 +/- 0.3 eV at 223.6 K. The analysis and the XI-u values obtained are also valuable for symmetry determination of deep electron traps in Si.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advantages of the supercell model in employing the recursion method are discussed in comparison with the cluster model. A transformation for changing complex Bloch-sum seed states to real seed states in recursion calculations is presented and band dispersion in the recursion method is extracted with use of the Lanczos algorithm. The method is illustrated by the band structure of GaAs in the empirical tight-binding parametrized model. In the supercell model, the treatment of boundary conditions is discussed for various seed-state choices. The method is useful in applying tight-binding techniques to systems with substantial deviations from periodicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We successfully applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Ab initio pseudopotential method was adopted to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies. To evaluate dynamical effects of screened interaction, GPP model was utilized to extend dieletric matrix elements from static results to finite frequencies. We give a full account of the theoretical background and the technical details for the first principle pseudopotential calculations of quasiparticle energies in semiconductors and insulators. Careful analyses are given for the effective and accurate evaluations of dielectric matrix elements and quasiparticle self-energies by using the symmetry properties of basis wavefunctions and eigenenergies. Good agreements between the calculated excitation energies and fundamental energy gaps and the experimental band structures were achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two obvious emissions are observed from the ZnS clusters encapsulated in zeolite-Y. The emission around 355 nm is sharp and weak, locating at the onset of the absorption edge. The band around 535 nm is broad, strong and Stokes-shifted. Both the two emissions shift to blue and their intensities firstly increase then decrease as the loading of ZnS in zeolite-Y or clusters size decreases. Through investigation, the former is attributed to the excitonic fluorescence, and the latter to the trapped luminescence from surface states. The cluster size-dependence of the luminescence may be explained qualitatively by considering both the carrier recombination and the nonradiative recombination rates. Four peaks appearing in the excitation spectra are assigned to the transitions of 1S-1S, 1S-1P, 1S-1D and surface state, respectively. The excitation spectra of the clusters do not coincide with their absorption spectra. The states splitted by quantum-size confinement are detected in the excitation spectra, but could not be differentiated in the optical absorption spectra due to inhomogeneous broadening. The size-dependence of the excitation spectra is similar to that of the absorption spectra. Both the excitation spectra of excitonic and of trapped emissions are similar, but change in relative intensity and shift in position are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence (PL) properties of ZnSe films grown by hot wall epitaxy are reported. The PL spectra show clear neutral donor-bound exciton peak; donor acceptor pair (DAP) peak, conduction band to acceptor (CA) peak, and their phonon replicas until fourth order. The conduction band to acceptor peak and it's phonon replicas exist until room temperature. From the ratio of PL intensities of DAP and CA peaks and their replicas, we obtain the Huang-Rhys factor S = 0.58, in agreement with other experiments for acceptor-bound exciton transitions. From the temperature dependence of PL intensities we derive the activation energy of thermal quenching process for the DAP transitions as about 7 meV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer-matrix method widely used in the calculation of the band structure of semiconductor quantum wells is found to have limitations due to its intrinsic numerical instability. It is pointed out that the numerical instability arises from free-propagating transfer matrices. A new scattering-matrix method is developed for the multiple-band Kane model within the envelope-function approximation. Compared with the transfer-matrix method, the proposed algorithm is found to be more efficient and stable. A four-band Kane model is used to check the validity of the method and the results are found to be in good agreement with earlier calculations.